Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: a systems biology approach

Author:

Selvan G. Tamizh,Gollapalli PavanORCID,Shetty Praveenkumar,Kumari N. Suchetha

Abstract

Abstract Background Comorbid type 2 diabetes mellitus (T2DM) increases the risk for tuberculosis (TB) and its associated complications, although the pathological connections between T2DM and TB are unknown. The current research aims to identify shared molecular gene signatures and pathways that affirm the epidemiological association of T2DM and TB and afford clues on mechanistic basis of their association through integrative systems biology and bioinformatics approaches. Earlier research has found specific molecular markers linked to T2DM and TB, but, despite their importance, only offered a limited understanding of the genesis of this comorbidity. Our investigation used a network medicine method to find possible T2DM-TB molecular mediators. Results Functional annotation clustering, interaction networks, network cluster analysis, and network topology were part of our systematic investigation of T2DM-TB linked with 1603 differentially expressed genes (DEGs). The functional enrichment and gene interaction network analysis emphasized the importance of cytokine/chemokine signalling, T cell receptor signalling route, NF-kappa B signalling pathway and Jak-STAT signalling system. Furthermore, network analysis revealed significant DEGs such as ITGAM and STAT1, which may be necessary for T2DM-TB immune responses. Furthermore, these two genes are modulators in clusters C4 and C5, abundant in cytokine/chemokine signalling and Jak-STAT signalling pathways. Conclusions Our analyses highlight the role of ITGAM and STAT1 in T2DM-TB-associated pathways and advances our knowledge of the genetic processes driving this comorbidity.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3