Novel approach for solving higher-order differential equations with applications to the Van der Pol and Van der Pol–Duffing equations

Author:

Elnady Abdelrady OkashaORCID,Newir Ahmed,Ibrahim Mohamed A.

Abstract

Abstract Background Numerical methods are used to solve differential equations, but few are effective for nonlinear ordinary differential equations (ODEs) of order higher than one. This paper proposes a new method for such ODEs, based on Taylor series expansion. The new method is a second-order method for second-order ODEs, and it is equivalent to the central difference method, a well-known method for solving differential equations. The new method is also simple to implement for higher-order differential equations. The proposed technique was applied to solve the Van der Pol and Van der Pol–Duffing equations. It is stable over a wide range of nonlinearity and produces accurate and reliable results. For the self-excitation Van der Pol equation, the proposed technique was applied with different values of nonlinear damping. Results The results were compared with those obtained using the ODE15s solver in MATLAB. The two sets of results showed excellent agreement. For the forced Van der Pol–Duffing equation, the proposed technique was applied with different values of exciting force amplitude and frequency. It was found that for certain conditions, the solution obtained using the proposed technique differed from that obtained using ODE15s. Conclusions The solution obtained using the proposed technique showed good agreement with the solutions obtained using ODE45 and Runge–Kutta fourth order. The results show that the proposed approach is very simple to apply and produces acceptable error. It is a powerful and versatile tool for solving of high-order nonlinear differential equations accurately.

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Friedman M (1994) Fundamentals of computer numerical analysis. CRC Press, Boca Raton

2. Nakamura S (1993) Applied numerical methods in C. Prentice-Hall Inc., Hoboken

3. Atkinson K, Han W, Stewart DE (2011) Numerical solution of ordinary differential equations. Wiley, Hoboken

4. Morton KW, Mayers DF (2005) Numerical solution of partial differential equations: an introduction. Cambridge University Press, Cambridge

5. Horn MK (1983) Fourth-and fifth-order, scaled Rungs–Kutta algorithms for treating dense output. SIAM J Numer Anal 20(3):558–568

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3