Simulation study on nonlinear frequency shift of narrow band whistler-mode waves in a homogeneous magnetic field

Author:

Katoh Yuto,Omura Yoshiharu

Abstract

Abstract We study frequency variation of a coherent whistler-mode wave in a homogeneous magnetic field by a selfconsistent simulation model. Simulation results show that an injected whistler-mode wave packet grows due to an instability driven by temperature anisotropy and the amplified wave packet triggers emissions with frequency shift during its propagation. We clarify that the resonant currents J E and J B due to the nonlinear wave-particle interaction play significant roles in both wave growth and frequency variation. Based on the simulation results, we show that the range of the frequency shift in a homogeneous system is quantitatively estimated by the trapping frequency V T of trapped electrons; in a case that the original frequency of the wave packet is 0.62Ωe and V T=4.05 × 10−2 c, the lower and upper frequencies are estimated to be 0.565Ωe and 0.685Ωe, respectively. The results of the present study reveal that the role of nonlinear trapping is significant in the elementary process of VLF triggered emissions in the equatorial region of the magnetosphere.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electron Microbursts Induced by Nonducted Chorus Waves;Frontiers in Astronomy and Space Sciences;2021-10-04

2. Saturn chorus intensity variations;Journal of Geophysical Research: Space Physics;2013-09

3. Frequency drift of Saturn chorus emission compared to nonlinear theory;Journal of Geophysical Research: Space Physics;2013-03

4. Theory and simulation of the generation of whistler-mode chorus;Journal of Geophysical Research: Space Physics;2008-04

5. Relativistic turning acceleration of radiation belt electrons by whistler mode chorus;Journal of Geophysical Research: Space Physics;2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3