A measurement of the lunar semidiurnal tide at Wuhan (30°40′N, 114°30′E)

Author:

Niu X. J.,Xiong J. G.,Wan W. X.,Ning B. Q.,Liu L. B.

Abstract

Abstract Upper atmospheric winds have been measured at heights from 80 to 100 km overWuhan (30°40N, 114°30′E), China with a meteor radar from 2002 to 2005. The variations of lunar semidiurnal tidal amplitudes and phases with both seasons and heights are studied in detail to reveal the properties of the lunar semidiurnal tide. It is shown that the lunar semidiurnal tide is stronger in January than other months, and its second peak appears near August. For most months the eastward maximum is 3 ± 1 lunar hours later than the northward maximum, as classical theory predicts for a northern hemisphere tide. The observed seasonal and height variations are also compared with the Global Scale Wave Model (GSWM). The phases do not agree well with those of the GSWM model. The maximum amplitude occurs in a different month in the model. There are about 5 lunar hours phase difference between the observed and the model at 90 and 96 km in eastward and northward components. A comparison of the lunar and solar semidiurnal tides is also shown in this paper. The behavior of these two tides in season is different, especially for the month of appearance of maximum amplitude.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet;Journal of Geophysical Research: Space Physics;2017-12

2. Long term variabilities and tendencies of mesospheric lunar semidiurnal tide over Tirunelveli (8.7°N, 77.8°E);Journal of Atmospheric and Solar-Terrestrial Physics;2017-10

3. Global observations of thermospheric lunar tidal winds;Journal of Atmospheric and Solar-Terrestrial Physics;2015-12

4. Contrast analysis of the lunar atmospheric M-2 and N-2 tides in Wuhan and Adelaide;CHINESE J GEOPHYS-CH;2014

5. Solar and lunar geomagnetic variations in the northwestern part of Turkey;Geophysical Journal International;2012-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3