Comparison of expression profiles between undifferentiated and differentiated porcine IPEC-J2 cells

Author:

Pi Guolin,Song Wenxin,Wu Zijuan,Li YaliORCID,Yang Huansheng

Abstract

Abstract Background The intestinal porcine enterocyte cell line (IPEC-J2) is a well-established model to study porcine intestinal physiology. IPEC-J2 cells undergo spontaneous differentiation during culture while changes in expression patterns of differentiated IPEC-J2 remain unclear. Therefore, this study was aimed to investigate the expression profiles of IPEC-J2 cells at the transcriptional level. Differentially expressed genes (DEGs), enriched pathways and potential key genes were identified. Alkaline phosphatase (AKP) and percentages of apoptotic cells were also measured. Results Overall, a total of 988 DEGs were identified, including 704 up-regulated and 284 down-regulated genes. GO analysis revealed that epithelial cell differentiation, apoptotic signaling pathway, regulation of cytokine production and immune system process, regulation of cell death and proliferation, cell junction complexes, and kinase binding were enriched significantly. Consistently, KEGG, REACTOME, and CORUM analysis indicated that cytokine responses modulation may be involved in IPEC-J2 differentiation. Moreover, AKP activity, a recognized marker of enterocyte differentiation, was significantly increased in IPEC-J2 after 14 days of culture. Meanwhile, annexin V-FITC/PI assay demonstrated a remarkable increase in apoptotic cells after 14 days of culture. Additionally, 10 hub genes were extracted, and STAT1, AKT3, and VEGFA were speculated to play roles in IPEC-J2 differentiation. Conclusions These findings may contribute to the molecular characterization of IPEC-J2, and may progress the understanding of cellular differentiation of swine intestinal epithelium.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Small Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3