Alpha-linolenic acid inhibits hepatocellular carcinoma cell growth through Farnesoid X receptor/β-catenin signaling pathway

Author:

Feng Shu,Xie Xingming,Chen Chaochun,Zuo Shi,Zhao Xueke,Li Haiyang

Abstract

Abstract Background Altered lipid profiles are frequently present in cancer, and it is necessary to elucidate the role of changed lipid profiles in hepatocellular carcinoma (HCC). We conducted this study to investigate the changed lipid profile in HCC tissues and discover some remarkably changed lipid components, and to explore the function of changed lipid components in HCC development. Methods Gas chromatography/mass spectrometer (GC/MS analysis) was employed to measure the abundance of fatty acids between HCC tissues and adjacent noncancerous tissues. The proliferative ability of HCC cells was determined by Cell Counting Kit-8 and EdU assays. Transwell and wound healing assays were employed to determine the migratory ability of HCC cells. Protein expression was assessed by western blot assay. Results GC/MS analysis revealed that alpha-linolenic acid was present at lower levels in HCC tissues than that in the adjacent noncancerous tissues. Alpha-linolenic acid inhibited the proliferation, migration and invasion of HCC cells in vitro. Western blotting showed that alpha-linolenic acid treatment increased Farnesoid X receptor expression and decreased β-catenin and cyclinD1 expression. Conclusions Alpha-linolenic acid suppresses HCC progression through the FXR/Wnt/β-catenin signaling pathway. Rational use of alpha-linolenic acid may prevent the occurrence of liver cancer in the future.

Funder

Science and Technology Program of Guizhou Province

Cultivate project 2021 for National Natural Science Foundation of China, Affiliated Hospital of Guizhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

Reference27 articles.

1. Hyuna S, Jacques F, Rebecca LS, Mathieu L, Isabelle S, Ahmedin J, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71:209–49.

2. Peng S, Chen D, Cai J, Yuan Z, Huang B, Li Y, et al. Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis. Mol Oncol. 2021;15(5):1391–411.

3. Ma Y, Zha J, Yang X, Li Q, Zhang Q, Yin A, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation. Oncogene. 2021;40:1806–20.

4. West L, Yin Y, Pierce SR, Fang Z, Fan Y, Sun W, et al. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am J Cancer Res. 2020;10:4450–63.

5. Yuan P, Mu J, Wang Z, Ma S, Da X, Song J, et al. Down-regulation of SLC25A20 promotes hepatocellular carcinoma growth and metastasis through suppression of fatty-acid oxidation. Cell Death Dis. 2021;12:361.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3