Author:
Feng Shu,Xie Xingming,Chen Chaochun,Zuo Shi,Zhao Xueke,Li Haiyang
Abstract
Abstract
Background
Altered lipid profiles are frequently present in cancer, and it is necessary to elucidate the role of changed lipid profiles in hepatocellular carcinoma (HCC). We conducted this study to investigate the changed lipid profile in HCC tissues and discover some remarkably changed lipid components, and to explore the function of changed lipid components in HCC development.
Methods
Gas chromatography/mass spectrometer (GC/MS analysis) was employed to measure the abundance of fatty acids between HCC tissues and adjacent noncancerous tissues. The proliferative ability of HCC cells was determined by Cell Counting Kit-8 and EdU assays. Transwell and wound healing assays were employed to determine the migratory ability of HCC cells. Protein expression was assessed by western blot assay.
Results
GC/MS analysis revealed that alpha-linolenic acid was present at lower levels in HCC tissues than that in the adjacent noncancerous tissues. Alpha-linolenic acid inhibited the proliferation, migration and invasion of HCC cells in vitro. Western blotting showed that alpha-linolenic acid treatment increased Farnesoid X receptor expression and decreased β-catenin and cyclinD1 expression.
Conclusions
Alpha-linolenic acid suppresses HCC progression through the FXR/Wnt/β-catenin signaling pathway. Rational use of alpha-linolenic acid may prevent the occurrence of liver cancer in the future.
Funder
Science and Technology Program of Guizhou Province
Cultivate project 2021 for National Natural Science Foundation of China, Affiliated Hospital of Guizhou Medical University
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference27 articles.
1. Hyuna S, Jacques F, Rebecca LS, Mathieu L, Isabelle S, Ahmedin J, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71:209–49.
2. Peng S, Chen D, Cai J, Yuan Z, Huang B, Li Y, et al. Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis. Mol Oncol. 2021;15(5):1391–411.
3. Ma Y, Zha J, Yang X, Li Q, Zhang Q, Yin A, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation. Oncogene. 2021;40:1806–20.
4. West L, Yin Y, Pierce SR, Fang Z, Fan Y, Sun W, et al. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am J Cancer Res. 2020;10:4450–63.
5. Yuan P, Mu J, Wang Z, Ma S, Da X, Song J, et al. Down-regulation of SLC25A20 promotes hepatocellular carcinoma growth and metastasis through suppression of fatty-acid oxidation. Cell Death Dis. 2021;12:361.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献