Author:
Chen Fulian,Wang Yan,Wang Hongwei,Dong Zhenhua,Wang Yan,Zhang Mengqi,Li Jiaxuan,Shao Shanshan,Yu Chunxiao,Huan Zhikun,Xu Jin
Abstract
Abstract
Background
α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism.
Methods
Male Sprague-Dawley rats were fed a normal control diet (NC, 10% fat), FO diet (NY, 10% fat), HFD (60% fat), or HFD containing 10% FO (HY, 60% fat) for 22 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of ALP, P1NP, and CTX-1. Rat primary osteoblasts (OBs) were treated with different concentrations of ALA with or without palmitic acid (PA) treatment. The ALP activity, osteogenic-related gene and protein expression were measured.
Results
Rats in the HFD group displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, energy absorption, and elastic modulus, compared with the NC group (p < 0.05). However, HY attenuated the HFD-induced decreases in bone biomechanical properties, including maximum load, maximum fracture load, and ultimate tensile strength (p < 0.05). Trabecular bone markers such as trabecular volume bone mineral density (Tb. vBMD), trabecular bone volume/total volume (Tb. BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) were decreased, trabecular separation (Tb. Sp) and the structure model index (SMI) were increased in the HFD group compared with the NC group, and all parameters were remarkably improved in the HY group compared to the HFD group (p < 0.05). However, cortical bone markers such as cortical volume bone mineral density (Ct. vBMD), cortical bone volume/total volume (Ct. BV/TV) and cortical bone thickness (Ct. Th) were not significantly different among all groups. Moreover, the serum bone formation markers ALP and P1NP were higher and the bone resorption marker CTX-1 was lower in the HY group compared with levels in the HFD group. Compared with the NC group, the NY group had no difference in the above indicators. In rat primary OBs, PA treatment significantly decreased ALP activity and osteogenic gene and protein (β-catenin, RUNX2, and osterix) expression, and ALA dose-dependently restored the inhibition induced by PA.
Conclusions
FO might be a potential therapeutic agent for HFD-induced bone loss, most likely by promoting osteogenesis.
Funder
the National Natural Science Foundation of China
Taishan Scholar Construction Project Special Funding
Key research and development projection of Shandong province
Medical and Health Technology Development Project of Shandong province
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献