High fat diet significantly changed the global gene expression profile involved in hepatic drug metabolism and pharmacokinetic system in mice

Author:

He Yuqi,Yang Tao,Du Yimei,Qin Lin,Ma Feifei,Wu Zunping,Ling Hua,Yang Li,Wang Zhengtao,Zhou Qingdi,Ge Guangbo,Lu YanliuORCID

Abstract

Abstract Background High fat diet impact transcription of hepatic genes responsible for drug metabolism and pharmacokinetics. Until now, researches just focused on a couple specific genes without a global profile showing. Age-dependent manner was also not noted well. This study aims to investigate the high fat diet effect on transcriptome of drug metabolism and pharmacokinetic system in mouse livers and show the age-dependent evidence. Methods C57BL/6 male mice were used in this experiment. High fat diet was used to treat mice for 16 and 38 weeks. Serum total cholesterol, low density lipoprotein cholesterol, aspartate transaminase, and alanine transaminaselevels were measured. Meanwhile, Histology, RNA-Seq, RT-PCR analysis and fourteen major hepatic bile acids quantification were performed for the liver tissues. Data was mined at levels of genes, drug metabolism and pharmacokinetic sysem, and genome wide. Results Treatment with high fat diet for 38 weeks significantly increased levels of serum lipids as well as aspartate transaminase, and alanine transaminase. Meanwhile, lipid accumulation in livers was observed. At week 38 of the experiment, the profile of 612 genes involved in drug metabolism and pharmacokinetics was significantly changed, indicated by a heatmap visulization and a principal component analysis. In total 210 genes were significantly regulated. Cyp3a11, Cyp4a10, and Cyp4a14 were down-regulated by 10–35 folds, while these three genes also were highly expressed in the liver. High fat diet regulated 11% of genome-wide gene while 30% of genes involved in the hepatic drug metabolism and pharmacokinetic system. Genes, including Adh4, Aldh1b1, Cyp3a11, Cyp4a10, Cyp8b1, Fmo2, Gsta3, Nat8f1, Slc22a7, Slco1a4, Sult5a1, and Ugt1a9, were regulated by high fat diet as an aging-dependent manner. Bile acids homeostasis, in which many genes related to metabolism and transportation were enriched, was also changed by high fat diet with an aging-dependet manner. Expression of genes in drug metabolism and disposition system significantly correlated to serum lipid profiles, and frequently correlated with each other. Conclusions High fat diet changed the global transcription profile of hepatic drug metabolism and pharmacokinetic system with a age-dependent manner.

Funder

Guizhou Science and Technology Department

Science and Technology Foundation of Zunyi City

National Natural Science Foundation of China

the National Natural Science Foundation of China

Opening Project of Shanghai Key Laboratory of Complex Prescription

Opening Project of the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines

Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province

Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3