PS-341 alleviates chronic low-grade inflammation and improves insulin sensitivity through the inhibition of TM4 (UBAC2) degradation

Author:

Chen Lili,Ye Kuanping,Feng Xiaocheng,Li Lianxi,Li Qin,Huang Ying,Wang Xuanchun,Li Rumei,Hu Cheng,Yang Zhen,Lu Bin,Yang Yehong,Wen Jie,Zhang Zhaoyun,He Min,Wang Qinghua,Zhou Wenbai,Li Yintao,Liu Naijia,Huang Jinya,Shen Qiwei,Yao Qiyuan,Hu Renming

Abstract

Abstract Background The TM4 (UBAC2) protein, which contains 4 transmembrane domains and one ubiquitin binding domain, is mainly expressed in cell and nuclear membranes. The current research aimed to explore the role of TM4 in metabolic inflammation and to examine whether the ubiquitin–proteasome inhibitor PS-341 could regulate the function of TM4. Methods The metabolic phenotypes of TM4 knockout (KO) mice were studied. We next explored the association between the polymorphisms of TM4 and obesity in a Chinese Han population. TM4 expression in the visceral fat of obese patients who underwent laparoscopic cholecystectomy was also analysed. Finally, the effect of PS-341 on the degradation and function of the TM4 protein was investigated in vivo and in vitro. Results TM4 KO mice developed obesity, hepatosteatosis, hypertension, and glucose intolerance under a high-fat diet. TM4 counterregulated Nur77, IKKβ, and NF-kB both in vivo and in vitro. The TM4 SNP rs147851454 is significantly associated with obesity after adjusting for age and sex (OR 1.606, 95% CI 1.065–2.422 P = 0.023) in 3394 non-diabetic and 1862 type 2 diabetic adults of Han Chinese. TM4 was significantly downregulated in the visceral fat of obese patients. PS-341 induced TM4 expression through inhibition of TM4 degradation in vitro. In db/db mice, PS-341 administration led to downregulation of Nur77/IKKβ/NF-κB expression in visceral fat and liver, and alleviation of hyperglycaemia, hypertension, and glucose intolerance. The hyperinsulinaemic-euglycaemic clamp demonstrated that PS-341 improved the glucose infusion rate and alleviated insulin resistance in db/db mice. Conclusions PS-341 alleviates chronic low-grade inflammation and improves insulin sensitivity through inhibition of TM4 degradation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

Reference29 articles.

1. Feng B, Zhang Y, Mu J, Ye Z, Zeng W, Qi W, Luo Z, Guo Y, Yang X, Yuan F. Preventive effect of a proteasome inhibitor on the formation of accelerated atherosclerosis in rabbits with uremia. J Cardiovasc Pharmacol. 2010;55:129–38.

2. Moutzouris JP, Che W, Ramsay EE, Manetsch M, Alkhouri H, Bjorkman AM, Schuster F, Ge Q, Ammit AJ. Proteasomal inhibition upregulates the endogenous MAPK deactivator MKP-1 in human airway smooth muscle: mechanism of action and effect on cytokine secretion. Biochim Biophys Acta. 2010;1803:416–23.

3. Pujols L, Fernandez-Bertolin L, Fuentes-Prado M, Alobid I, Roca-Ferrer J, Agell N, Mullol J, Picado C. Proteasome inhibition reduces proliferation, collagen expression, and inflammatory cytokine production in nasal mucosa and polyp fibroblasts. J Pharmacol Exp Ther. 2012;343:184–97.

4. Schmidt N, Gonzalez E, Visekruna A, Kuhl AA, Loddenkemper C, Mollenkopf H, Kaufmann SH, Steinhoff U, Joeris T. Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut. 2010;59:896–906.

5. Marfella R, D’Amico M, Esposito K, Baldi A, Di Filippo C, Siniscalchi M, Sasso FC, Portoghese M, Cirillo F, Cacciapuoti F, Carbonara O, Crescenzi B, Baldi F, Ceriello A, Nicoletti GF, D’Andrea F, Verza M, Coppola L, Rossi F, Giugliano D. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes. 2006;55:622–32.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3