Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer

Author:

Ding Lei,Wang Yong,Tang Zhentao,Ni Chenbo,Zhang Qian,Zhai Qidi,Liang Chao,Li Jie

Abstract

Abstract Background Previous studies have unequivocally demonstrated that the vitamin D (VD) metabolism pathway significantly influences prognosis and sensitivity to hormone therapy in prostate cancer (PCa). However, the precise underlying mechanism remains unclear. Methods We performed molecular profiling of 1045 PCa patients, leveraging genes linked to VD synthesis and VD receptors. We then identified highly variable gene modules with substantial associations with patient stratification. Subsequently, we intersected these modules with differentially expressed genes between PCa and adjacent paracancerous tissues. Following a meticulous process involving single-factor regression and LASSO regression to eliminate extraneous variables and construct a prognostic model. Within the high-risk subgroup defined by the calculated risk score, we analyzed their differences in cell infiltration, immune status, mutation landscape, and drug sensitivity. Finally, we selected Apolipoprotein E (APOE), which featured prominently in this model for further experimental exploration to evaluate its potential as a therapeutic target. Results The prognostic model established in this study had commendable predictive efficacy. We observed diminished infiltration of various T-cell subtypes and reduced expression of co-stimulatory signals from antigen-presenting cells. Mutation analysis revealed that the high-risk cohort harbored a higher frequency of mutations in the TP53 and FOXA genes. Notably, drug sensitivity analysis suggested the heightened responsiveness of high-risk patients to molecular inhibitors targeting the Bcl-2 and MAPK pathways. Finally, our investigation also confirmed that APOE upregulates the proliferative and invasive capacity of PCa cells and concurrently enhances resistance to androgen receptor antagonist therapy. Conclusion This comprehensive study elucidated the potential mechanisms through which this metabolic pathway orchestrates the biological behavior of PCa and findings hold promise in advancing the development of combination therapies in PCa.

Funder

Jiangsu Province Capability Improvement Project through Science, Technology and Education

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3