Identification of key microRNAs in the carotid arteries of ApoE−/− mice exposed to disturbed flow

Author:

Wang Xinzhou,Gao Shuibo,Dai Liping,Wang Zhentao,Wu HongORCID

Abstract

Abstract Background Atherosclerosis (AS) is one of the main causes of cardiovascular disease. AS plaques often occur in blood vessels with oscillatory blood flow and their formation can be regulated by microRNAs (miRNAs). The aim of this study is to identify the key miRNAs and molecular pathways involved in this pathological process. Methods In this study, gene chip data obtained from the GEO database was analyzed using the LIMMA package to find differentially expressed miRNAs (DE miRNAs) in the carotid arteries of ApoE−/− mice exposed to different blood flow rates. Predicted targets of the DE miRNAs were identified using the TargetScan, miRDB, and DIANA databases respectively, and the potential target genes (PTGs) were found by analyzing the common results of three databases. The DAVID database was used to enrich the PTGs based on gene ontology (GO) and pathway (Kyoto Encyclopedia of Genes and Genomes, KEGG), and the STRING database was used to uncover any protein-protein interactions (PPI) of the PTGs. Results The networks of the DE miRNAs-PTGs, Pathway-PTGs-DE miRNAs, and PTGs PPI, were constructed using Cytoscape, and 11 up-regulated and 13 down-regulated DE miRNAs and 1479 PTGs were found. GO results showed that PTGs were significantly enriched in functions such as transcriptional regulation and DNA binding. KEGG results showed that PTGs were significantly enriched in inflammation-related mitogen-activated protein kinase (MAPK) and AS-related FOXO pathways. The PPI network revealed some key target genes in the PTGs. Conclusions The analysis of key miRNAs and molecular pathways that regulate the formation of AS plaques induced by oscillatory blood flow will provide new ideas for AS treatment.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3