Deciphering the potential ability of RG108 in cisplatin-induced HEI-OC1 ototoxicity: a research based on RNA-seq and molecular biology experiment

Author:

Zhang Dongdong,Sun Yixin,Lei Min,Wang Yue,Cai Chengfu

Abstract

Abstract Background Drug-induced hearing loss (DIHL) is very common, and seriously affects people's happiness in life. RG108 is a small molecule inhibitor. RG108 is protective against DIHL. Our purpose is to probe the incidence of RG108 on cisplatin-induced ototoxicity. Materials and methods In our research, the ototoxicity of RG108 was investigated in HEI-OC1. We observed under the microscope whether RG108 had an effect on cisplatin-induced cochlear hair cells. RNA-seq experiments were further performed to explore possible gene ontology (GO) and pathways. ROS assay was applied to supervisory the effect of RG108 on oxidative harm of auditory cells. In auditory cells, RG108 was tested for its effects on apoptosis-related proteins by Western blotting (WB). Results GO analysis showed that RG108 associated with apoptosis. KEGG analysis shows RG108 may act on PI3K-AKT signaling pathway (PASP) in hearing loss. BIOCARTA analysis showed that RG108 may affect oxidative stress by activating NRF2 pathway. ROS ascerted that RG108 could rescue oxidative harm in HEI-OC1. RG108 rescued cisplatin-induced significant increase in Bax and significant decrease in BCL2. RG108 attenuates cisplatin-induced cochlear apoptosis through upregulated phosphorylated PI3K and phosphorylated AKT and down-regulated caspase3. MTT experiments showed that both PI3K and AKT inhibitors could significantly rescue the damage caused by cisplatin to HEI-OC1. RG108 significantly increases the level of NRF2/HO-1/NQO1 in cisplatin-induced cells. Conclusion Overall, these results provide evidence that NRF2/PI3K-AKT axis may mediate RG108 in the treatment of DIHL, which provide a broader outlook on drug-induced deafness treatment.

Funder

Fujian Provincial Finance Department

Natural Science Foundation of Fujian Science and Technology Department

Weihai Science and Technology Development Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3