A novel molecular subtypes and risk model based on inflammatory response-related lncrnas for bladder cancer

Author:

Tang Fucai,Zhang Jiahao,Lu Zechao,Liao Haiqin,Hu Chuxian,Mai Yuexue,Lai Yongchang,Lu Zeguang,Tang Zhicheng,Li Zhibiao,He ZhaohuiORCID

Abstract

Abstract Background Inflammation and long noncoding RNAs (lncRNAs) are gradually becoming important in the development of bladder cancer (BC). Nevertheless, the potential of inflammatory response-related lncRNAs (IRRlncRNAs) as a prognostic signature remains unexplored in BC. Methods The Cancer Genome Atlas (TCGA) provided RNA expression profiles and clinical information of BC samples, and GSEA Molecular Signatures database provided 1171 inflammation-related genes. IRRlncRNAs were identified using Pearson correlation analysis. After that, consensus clustering was performed to form molecular subtypes. After performing least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses, a risk model constructed based on the prognostic IRRlncRNAs was validated in an independent cohort. Kaplan–Meier (KM) analysis, univariate and multivariate Cox regression, clinical stratification analysis, and time-dependent receiver operating characteristic (ROC) curves were utilized to assess clinical effectiveness and accuracy of the risk model. In clusters and risk model, functional enrichment was investigated using GSEA and GSVA, and immune cell infiltration analysis was demonstrated by ESTIMATE and CIBERSORT analysis. Results A total of 174 prognostic IRRlncRNAs were confirmed, and 406 samples were divided into 2 clusters, with cluster 2 having a significantly inferior prognosis. Moreover, cluster 2 exhibited a higher ESTIMATE score, immune infiltration, and PD-L1 expression, with close relationships with the inflammatory response. Further, 12 IRRlncRNAs were identified and applied to construct the risk model and divide BC samples into low-risk and high-risk groups successfully. KM, ROC, and clinical stratification analysis demonstrated that the risk model performed well in predicting prognosis. The risk score was identified as an independently significant indicator, enriched in immune, cell cycle, and apoptosis-related pathways, and correlated with 9 immune cells. Conclusion We developed an inflammatory response-related subtypes and steady prognostic risk model based on 12 IRRlncRNAs, which was valuable for individual prognostic prediction and stratification and outfitted new insight into inflammatory response in BC.

Funder

National Key Research and Development Program of China

Guangdong Basic and Applied Basic Research Foundation

Public Health Research Project in Futian District, Shenzhen

the Student Research Project of Guangzhou Medical University

the Sixth Clinical College of Guangzhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3