Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion

Author:

Liu YufeiORCID,Pang Dandan,Tian Yiping,Li Youyong,Jiang Huibing,Sun Yunnan,Xia Lifei,Chen Linbo

Abstract

Abstract Background The growth process of the tea plant (Camellia sinensis) includes vegetative growth and reproductive growth. The reproductive growth period is relatively long (approximately 1.5 years), during which a large number of nutrients are consumed, resulting in reduced tea yield and quality, accelerated aging, and shortened economic life of the tea plant. The formation of unisexual and sterile flowers can weaken the reproductive growth process of the tea plant. To further clarify the molecular mechanisms of pistil deletion in the tea plant, we investigated the transcriptome profiles in the pistil-deficient tea plant (CRQS), wild tea plant (WT), and cultivated tea plant (CT) by using RNA-Seq. Results A total of 3683 differentially expressed genes were observed between CRQS and WT flower buds, with 2064 upregulated and 1619 downregulated in the CRQS flower buds. These genes were mainly involved in the regulation of molecular function and biological processes. Ethylene synthesis–related ACC synthase genes were significantly upregulated and ACC oxidase genes were significantly downregulated. Further analysis revealed that one of the WIP transcription factors involved in ethylene synthesis was significantly upregulated. Moreover, AP1 and STK, genes related to flower development, were significantly upregulated and downregulated, respectively. Conclusions The transcriptome analysis indicated that the formation of flower buds with pistil deletion is a complex biological process. Our study identified ethylene synthesis, transcription factor WIP, and A and D-class genes, which warrant further investigation to understand the cause of pistil deletion in flower bud formation.

Funder

Key R&D Program of China

China Earmarked Fund for Modern Agro-industry Technology Research System

State Key Laboratory of Tea Plant Biology and Utilization

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Reference43 articles.

1. Chen L, Yu FL, Tong QQ. Discussions on phylogenetic classification and evolution of sect. Thea. J Tea Sci. 2000;20(2):89–94.

2. Li M, Chen LB, Tian YP, et al. Digital gene expression analysis of tea flowers without pistil at three development stages. J Tea Sci. 2017;37(1):97–107.

3. Xia CH, Shu JL. Chemical flowers removing and increase tea production in tea plant. Zhiwu Zazhi. 1979;2:6–7.

4. Huang YH. Analyses the way of control reproductive growth in tea plant. China Tea. 1997;4:6–7.

5. Ma QP, Chen CS, Zeng ZP, et al. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics. 2018;19(1):289.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3