Insulin-like growth factor binding protein 2: a core biomarker of left ventricular dysfunction in dilated cardiomyopathy

Author:

Yu Wei,Gao Hongli,Hu Tianyang,Tan Xingling,Liu Yiheng,Liu Hongli,He Siming,Chen Zijun,Guo Sheng,Huang JingORCID

Abstract

Abstract Background RNA modifications, especially N6-methyladenosine, N1-methyladenosine and 5–methylcytosine, play an important role in the progression of cardiovascular disease. However, its regulatory function in dilated cardiomyopathy (DCM) remains to be undefined. Methods In the study, key RNA modification regulators (RMRs) were screened by three machine learning models. Subsequently, a risk prediction model for DCM was developed and validated based on these important genes, and the diagnostic efficiency of these genes was assessed. Meanwhile, the relevance of these genes to clinical traits was explored. In both animal models and human subjects, the gene with the strongest connection was confirmed. The expression patterns of important genes were investigated using single-cell analysis. Results A total of 4 key RMRs were identified. The risk prediction models were constructed basing on these genes which showed a good accuracy and sensitivity in both the training and test set. Correlation analysis showed that insulin-like growth factor binding protein 2 (IGFBP2) had the highest correlation with left ventricular ejection fraction (LVEF) (R = -0.49, P = 0.00039). Further validation expression level of IGFBP2 indicated that this gene was significantly upregulated in DCM animal models and patients, and correlation analysis validation showed a significant negative correlation between IGFBP2 and LVEF (R = -0.87; P = 6*10–5). Single-cell analysis revealed that this gene was mainly expressed in endothelial cells. Conclusion In conclusion, IGFBP2 is an important biomarker of left ventricular dysfunction in DCM. Future clinical applications could possibly use it as a possible therapeutic target.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3