Prognosis prediction models for post-stroke depression: a protocol for systematic review, meta-analysis, and critical appraisal

Author:

Zhou LuORCID,Wang Lei,Liu Gao,Cai EnLiORCID

Abstract

Abstract Introduction Post-stroke depression (PSD) is a prevalent complication that has been shown to have a negative impact on rehabilitation outcomes and quality of life and poses a significant risk for suicidal intention. However, models for discriminating and predicting PSD in stroke survivors for effective secondary prevention strategies are inadequate as the pathogenesis of PSD remains unknown. Prognostic prediction models that exhibit greater rule-in capacity have the potential to mitigate the issue of underdiagnosis and undertreatment of PSD. Thus, the planned study aims to systematically review and critically evaluate published studies on prognostic prediction models for PSD. Methods and analysis A systematic literature search will be conducted in PubMed and Embase through Ovid. Two reviewers will complete study screening, data extraction, and quality assessment utilizing appropriate tools. Qualitative data on the characteristics of the included studies, methodological quality, and the appraisal of the clinical applicability of models will be summarized in the form of narrative comments and tables or figures. The predictive performance of the same model involving multiple studies will be synthesized with a random effects meta-analysis model or meta-regression, taking into account heterogeneity. Ethics and dissemination Ethical approval is considered not applicable for this systematic review. Findings will be shared through dissemination at academic conferences and/or publication in peer-reviewed academic journals. Systematic review registration PROSPERO CRD42023388548.

Funder

Yunnan University of Chinese Medicine

Yunnan Provincial Department of Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3