Network meta-analysis for an ordinal outcome when outcome categorization varies across trials

Author:

Morris Paul,Wang ChongORCID,O’Connor Annette

Abstract

Abstract Background Binary outcomes are likely the most common in randomized controlled trials, but ordinal outcomes can also be of interest. For example, rather than simply collecting data on diseased versus healthy study subjects, investigators may collect information on the severity of disease, with no disease, mild, moderate, and severe disease as possible levels of the outcome. While some investigators may be interested in all levels of the ordinal variable, others may combine levels that are not of particular interest. Therefore, when research synthesizers subsequently conduct a network meta-analysis on a network of trials for which an ordinal outcome was measured, they may encounter a network in which outcome categorization varies across trials. Methods The standard method for network meta-analysis for an ordinal outcome based on a multinomial generalized linear model is not designed to accommodate the multiple outcome categorizations that might occur across trials. In this paper, we propose a network meta-analysis model for an ordinal outcome that allows for multiple categorizations. The proposed model incorporates the partial information provided by trials that combine levels through modification of the multinomial likelihoods of the affected arms, allowing for all available data to be considered in estimation of the comparative effect parameters. A Bayesian fixed effect model is used throughout, where the ordinality of the outcome is accounted for through the use of the adjacent-categories logit link. Results We illustrate the method by analyzing a real network of trials on the use of antibiotics aimed at preventing liver abscesses in beef cattle and explore properties of the estimates of the comparative effect parameters through simulation. We find that even with the categorization of the levels varying across trials, the magnitudes of the biases are relatively small and that under a large sample size, the root mean square errors become small as well. Conclusions Our proposed method to conduct a network meta-analysis for an ordinal outcome when the categorization of the outcome varies across trials, which utilizes the adjacent-categories logit link, performs well in estimation. Because the method considers all available data in a single estimation, it will be particularly useful to research synthesizers when the network of interest has only a limited number of trials for each categorization of the outcome.

Publisher

Springer Science and Business Media LLC

Reference26 articles.

1. Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med. 2017;12(1):103–11. https://doi.org/10.1007/s11739-016-1583-7.

2. Dias S. A generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. Updated. NICE DSU technical support document. London: National Institute for Health and Care Excellence NICE; 2014.

3. Agresti A. Analysis of ordinal categorical data / Alan Agresti. 2nd ed. Wiley series in probability and statistics; 2010.

4. Agresti A. Categorical data analysis. 3rd ed. Wiley series in probability and statistics. Hoboken: Wiley-Interscience; 2013.

5. Schmid CH, Trikalinos TA, Olkin I. Bayesian network meta-analysis for unordered categorical outcomes with incomplete data. Res Synth Methods. 2014;5(2):162–85.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3