Investigation of mechanical properties of Armco-iron during fatigue test

Author:

Vshivkov А.,Prokhorov А.,Uvarov S.,Plekhov O.

Abstract

Abstract Background In this paper the mechanical properties of armco-iron are studied experimentally. The ultrasonic testing machine USF-2000 was used to carry out fatigue tests involving 106–1010 loading cycles. The frequency of loading is 19.5 ± 0.5 kHz. Based on the experimental data, the Wöhler curve was obtained. Methods For the analysis of physical condition, two new sensors were designed, one of which measured the electric resistance of the sample and the other measured the magnetic permeability. Second measuring method can be applied to ferromagnetic materials only, though it may be useful for studying the mechanical properties of metals in general. Results It was shown that the significant changes in physical processes accompanying the evolution of structural defects in the material were observed in the final stages of the experiment. Conclusions The applied measurement techniques allowed us to exactly determine the time of fatigue crack initiation below the surface the material, which cannot be monitored by the standard optic methods.

Funder

Russian Foundation for Basic Research

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Reference14 articles.

1. Bathias C, Paris P (2004) Gigacycle Fatigue in Mechanical Practice. Taylor & Francis, New York, p 328

2. Bathias C, Paris PC (2005) Gigacycle fatigue in mechanical practice. Marcel Dekker Publisher Co, New York USA

3. Botvina L (2004) Gigaciklovaya ystalost-novaya problema fiziki I mehaniki razrysheniya. Plants laboratory. Materials diagnostic 70(4):41–51

4. Naimark OB, Davydova M, Plekhov OA, Uvarov SV (2000) Nonlinear and structural aspects of transitions from damage to fracture in composites and structures. Comput Struct 76(1):67–75

5. Naimark O, Plekhov O, Betekhtin V, Kadomcev A, Narikova М (2014) Kinetika nakopleniya defektov I dyalnost Krivoi vellera pri gigaciklovoi ystalosti metallov. TPJ 84(3):89–94

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3