Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert

Author:

Das Sudhansu Ranjan,Panda Asutosh,Dhupal Debabrata

Abstract

Abstract Background Now-a-days, newer hardened steel materials are coming rapidly into the market due to its wide applications in various fields of engineering. So the machinability investigation of these steel materials is one of the prime concern for practicing engineers, prior to actual machining. Methods The present study addresses surface roughness, flank wear and chip morphology during dry hard turning of AISI 4340 steel (49 HRC) using CVD (TiN/TiCN/Al2O3/TiN) multilayer coated carbide tool. Three factors (cutting speed, feed and depth of cut) and three-level factorial experiment designs with Taguchi’s L9 Orthogonal array (OA) and statistical analysis of variance (ANOVA) were performed to investigate the consequent effect of these cutting parameters on the tool and workpiece in terms of flank wear and surface roughness. For better understanding of the cutting process, surface topography of machined workpieces, wear mechanisms of worn coated carbide tool and chip morphology of generated chips were observed by scanning electron microscope (SEM). Consequently, multiple regression analysis was adopted to develop mathematical model for each response, along with various diagnostic tests were performed to check the validity and efficacy of the proposed model. Finally, to justify the economical feasibility of coated carbide tool in hard turning application, a cost analysis was performed based on Gilbert’s approach by evaluating the tool life under optimized cutting condition (suggested by response optimization technique). Results The results shows that surface roughness and flank wear are statistically significant influenced by feed and cutting speed. In fact, increase in cutting speed resulted in better surface finish as well as increase in flank wear. Tool wear describes the gradual failure of cutting tool, caused grooves by abrasion due to rubbing effect of flank land with hard particles in the machined surface and high cutting temperature. Chip morphology confirms the formation of saw-tooth type of chip with severity of chip serration due to cyclic crack propagation caused by plastic deformation. The total machining cost per part is found to be $0.13 (i.e. in Indian rupees Rs. 8.21) for machining of hardened AISI 4340 steel with coated carbide tool. Conclusions From the study, the effectiveness and potential of multilayer TiN/TiCN/Al2O3/TiN coated carbide tool for hard turning process during dry cutting condition possesses high yielding and cost-effective benefit to substitute the traditional cylindrical grinding operation. Apart, it also contributes reasonable option to costlier CBN and ceramic tools.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3