Mathematical modeling of the electron-beam wire deposition additive manufacturing by the smoothed particle hydrodynamics method

Author:

Trushnikov Dmitriy Nikolayevich,Koleva Elena Georgieva,Davlyatshin Roman Pozolovich,Gerasimov Roman Mikhailovich,Bayandin Yuriy VitalievichORCID

Abstract

Abstract Background The actual problem for calculating a shape of free surface of the melt when analyzing the processes of wire-based electron-beam surfacing on the substrate, being introduced into additive manufacturing, is the development of adequate mathematical models of heat and mass transfer. The paper proposed a formulation of the problem of melt motion in the framework of the Lagrangian description. The mathematical statement includes the balance equations for mass, momentum and energy, and physical equations for describing heat and mass transfer. Methods The smoothed particle hydrodynamics method was used for numerical simulation of the process of wire-based electron-beam surfacing on the substrate made from same materials (titanium or steel). A finite-difference analog of the equations is given and the algorithm for solving the problem is implemented. To integrate the discretized equations Verlet method was utilized. Algorithms are implemented in the open software package LAMMPS. Results The numerical simulation results allow the estimation of non-stationary volume temperature distributions, melt flow velocities and pressures, and characteristics of process. Conclusion The possibility of applying the developed mathematical model to describe additive production is shown. The comparison of numerical calculations with experimental studies showed good agreement.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3