Optimization of machining parameters and wire vibration in wire electrical discharge machining process

Author:

Habib SamehORCID

Abstract

Abstract Background Wire Electrical discharge machining (WEDM) has higher capability for cutting complex shapes with high precision for very hard materials without using high cost of cutting tools. During the WEDM process, the wire behaves like a metal string, straightened by two axial pulling forces and deformed laterally by a sum of forces from the discharge process. Major forces acting on the wire can be classified into three categories. The first is a tensile force, pulling the wire from both sides in axial direction and keeping it straight. The second is the dielectric flushing force that comes from circulation of the dielectric fluid in the machining area. The third category consists of forces of different kinds resulting from sparking and discharging. Large amplitude of wire vibration leads to large kerf widths, low shape accuracies, rough machined surfaces, low cutting speeds and high risk of wire breakage. Such tendencies for poor machining performance due to wire instability behavior appear with thinner wires. Methods The present work investigates a mathematical modeling solution for correlating the interactive and higher order influences of various parameters affecting wire vibration during the WEDM process through response surface methodology (RSM). The adequacy of the above proposed model has been tested using analysis of variance (ANOVA). Results Optimal combination of machining parameters such as wire tension, wire running speed, flow rate and servo voltage parameters has been obtained to minimize wire vibration. Conclusions The analysis of the experimental observations highlights that the wire tension, wire running speed, flow rate and servo voltage in WEDM greatly affect average wire vibration and kerf width.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3