Modelling of thermomechanical behaviour of fibrous polymeric composite materials subject to relaxation transition in the matrix

Author:

Matveenko Valeriy Pavlovich,Trufanov Nikolay Alexandrovich,Smetannikov Oleg Yurievich,Shardakov Igor Nikolaevich,Vasserman Igor Nikolaevich

Abstract

Abstract Background Fiber–reinforced polymer composite materials are widely used in different branches of industry due to their distinctive features such as high specific strength and stiffness and due to as considerable opportunity to formulate materials with controllable variation of properties in response to the action of external factors (smart-materials). A distinguishing feature of products made of composite materials is that the processes of product and material fabrication are inseparable. Therefore the estimation of composite properties based on the composite architecture and properties of the reinforcing fibers and matrix is a very actual task. Methods The model of polymer behavior at glass transition recently developed by the authors was generalized to the case of fiber-reinforced polymer matrix composites using two approaches: one is base on the concept of free specific energy, the other – on the growth of matrix stiffness. For homogeneous materials these two approaches are of equal worth, whereas for composite materials they give different results under deformation in the transverse direction. The stiffness growth approach is more accurate, but is very expensive computationally and, is highly sensitive to the experimental data errors. Results Using the finite element method and averaging technique the thermoelastic constants of composites containing different types of fibers in the glassy and high-elastic states were calculated based on the fiber and matrix properties. Softening of the matrix has an insignificant effect on the longitudinal modulus of a composite but leads to a considerable decrease of the transverse and shear moduli. The coefficient of thermal expansion in the transverse direction is much higher than the coefficient of thermal expansion in the longitudinal direction, especially when the composite is in the high-elastic state. Conclusion The model of polymer behavior at glass transition recently developed by the authors can be generalized to the case of fiber-reinforced polymer matrix composites. The thermoelastic constants of composites containing different types of fibers can be calculated from the fiber and matrix properties using the finite element method and averaging technique.

Funder

Russian Foundation for Basic Research

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Reference38 articles.

1. Askadskiy AA (1973) Deformation of polymers. Chemistry, Moscow

2. Bartenev GM, Zelenev Yu V (1976) Course of lectures in physics of polymers. Chemistry, Moscow

3. Begishev VP, Matveenko VP, Pistsov NV, Shardakov IN (1997) Modeling of thermomechanical processes in crystallizing polymers. Proceedings of RAS. Solid Mechanics (4):120–132

4. Brader JM, Voigtmann T, Fuchs M, Larson RG, Cates ME (2009) Glass rheology: From mode-coupling theory to a dynamical yield criterion. Proc Natl Acad Sci U S A 106(36):15186–15191

5. Buckley CP, Jones DC (1995) Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 36:3301–3312

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3