Abstract
Abstract
Background
The tomato red spider mite, Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae), is an agricultural pest of solanaceous crops. Although T. evansi is of South American subtropical origin, it has recently expanded its distribution range to many tropical and temperate areas around the world. Its potential distribution range in response to scenarios of global warming was recently modeled, confirming its current and possible future distributions. Here, we experimentally investigated the biological traits of T. evansi in the context of the current and future global warming (2100) scenarios. Using an environmental simulation system, we tested the life-history traits of T. evansi under current summer temperatures (as of June, July, and August 2016) and under expected temperature increases based on two IPCC scenarios: RCP2.6 (+ 1 °C) and RCP8.5 (+ 3.7 °C). The mites were introduced into each scenario on 1 June and their sequential progeny were used for testing in each following month.
Results
The mite could develop and reproduce under all scenarios. There was a decrease in the duration of lifespan and female fecundity at RCP8.5 during June and August, but this may be compensated for by the high intrinsic rate of increase, which implies faster population growth and shorter generation time.
Conclusion
Our study and other reports reveal the high adaptability of T. evansi to a wide range of summer temperatures; this may explain its current distribution. We anticipate that global warming will favor the spread of T. evansi and may further expand its distribution to a large area of the globe. These findings should be of ecological and practical relevance for designing prevention and control strategies.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science,Ecology, Evolution, Behavior and Systematics
Reference52 articles.
1. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol. 2002;8:1–16.
2. Logan JA, Regniere J, Powell JA. Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ. 2003;1:130–7.
3. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS. 2008;105:6668–72.
4. Macfadyen S, McDonald G, Hill MP. From species distributions to climate change adaptation: knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agric Ecosyst Environ. 2018;253:208–19.
5. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献