Abstract
Abstract
Background
The characteristics of a larval habitat is an important factor which affects the breeding pattern and population growth of mosquitoes Information about the larval habitat characteristics and pupal productivity can be utilized for the surveillance of the level of population growth, species diversity, and preferred breeding sites of mosquitoes, which are important aspects of integrated vector control. In the present study, mosquito larvae were collected from 22 natural habitats in five counties of the West Azerbaijan Province in the Northwest of Iran during May–November 2018. Physicochemical characteristics of the habitats were investigated. These included alkalinity, chloride (Cl) content, water temperature (°C), turbidity (NTU), Total Dissolved Solids (TDS) (ppm), Electrical Conductivity (EC) (μS/cm), and acidity (pH). The index of affinity between the collected species was calculated using Fager & McGowan test.
Results
A total of 2715 specimens were collected and identified. Seven different species belonging to four genera were identified in our study sites. The species included, Culex pipiens Linnaeus 1758, Culex theileri Theobald 1903, Culex mimeticus Noé 1899, Culex modestus Ficalbi 1947, Culiseta longiareolata Macquart 1838, Anopheles maculipennis Meigen 1818complex, and Aedes caspius Pallas 1771. There was a significant difference in chloride content and water temperature preferences among the different species (P < 0.05). Also, there was no significant difference in pH, Alkalinity, Turbidity, TDS, and EC preferences among the different species (P > 0.05). The affinity between the pair of species Cx. mimeticus/Cs. longiareolata was 0.526. There was no affinity between other pairs of species or the affinity was very weak.
Conclusions
The physicochemical and biological characteristics of mosquito larval habitats play an important role in zoning of areas suitable for breeding and distribution. Surveillance of these characteristics can provide valuable information for entomological monitoring of mosquito vectors and for designing targeted control programs. Also, further studies should be undertaken in a wider geographical area, taking into account the complex characteristics of the physicochemical and ecological factors of the study area and their interaction with various mosquito species.
Funder
Urmia University of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science,Ecology, Evolution, Behavior and Systematics
Reference61 articles.
1. Manguin S, Boëte C: Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. The Importance of Biological Interactions in the Study of Biodiversity InTech 2011.
2. Piyaratne MK, Amerasinghe FP, Amerasinghe PH, Konradsen F. Physico-chemical characteristics of Anopheles culicifacies and Anopheles varuna breeding water in a dry zone stream in Sri Lanka. J Vector Borne Diseases. 2005;42(2):61.
3. Organization WH: Manual on environmental management for mosquito control, with special emphasis on malaria vectors: World Health Organization; 1982.
4. Hanafi-Bojd A, Vatandoost H, Oshaghi M, Charrahy Z, Haghdoost A, Sedaghat M, Abedi F, Soltani M, Raeisi A. Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious area of southern Iran. J Vector Borne Diseases. 2012;49(2):91.
5. Nikookar S, Fazeli-Dinan M, Azari-Hamidian S, Mousavinasab S, Arabi M, Ziapour S, Shojaee J, Enayati A. Species composition and abundance of mosquito larvae in relation with their habitat characteristics in Mazandaran Province, northern Iran. Bull Entomol Res. 2017;107(5):598–610.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献