How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian

Author:

Székely DianaORCID,Cogălniceanu DanORCID,Székely PaulORCID,Armijos-Ojeda DiegoORCID,Espinosa-Mogrovejo Valentina,Denoël MathieuORCID

Abstract

Abstract Background In species with complex life cycles, size at metamorphosis is a key life-history trait which reflects the complex interactions between costs and benefits of life in the aquatic and terrestrial environments. Whereas the effects of a deteriorating larval habitat (e.g. pond desiccation) on triggering an early metamorphosis have been extensively investigated in amphibians, the consequences of the resulting reduced size at metamorphosis on fitness in the post-metamorphic terrestrial stage remain poorly understood. We tested the hypothesis that a smaller size at metamorphosis negatively affects performance and survival in the ensuing terrestrial stage. Using as model a tropical amphibian (Ceratophrys stolzmanni) showing a large phenotypic plasticity in metamorphosing traits, we evaluated the effects of size at metamorphosis on fitness-related trophic and locomotor performance traits, as well as on growth and survival rates. Results Our results support the hypothesis that a larger size at metamorphosis is correlated with better survival and performance. The survival rate of large metamorphosing individuals was 95%, compared to 60% for those completing metamorphosis at a small size. Locomotor performance and gape size were positively correlated with body size, larger animals being more mobile and capable to ingest larger prey. However, smaller individuals achieved higher growth rates, thus reducing the size gap. Conclusions Overall, size at metamorphosis affected profoundly the chances of survival in the short term, but smaller surviving individuals partly compensated their initial disadvantages by increasing growth rates.

Funder

Wallonie-Bruxelles International

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3