Arsenic, cadmium and neuron specific enolase (ENO2, γ-enolase) expression in breast cancer

Author:

Soh Maureen A,Garrett Scott H,Somji Seema,Dunlevy Jane R,Zhou Xu Dong,Sens Mary Ann,Bathula Chandra S,Allen Christina,Sens Donald A

Abstract

Abstract Background Neuron specific enolase (ENO2, γ-enolase) has been used as a biomarker to help identify neuroendocrine differentiation in breast cancer. The goal of the present study was to determine if ENO2 expression in the breast epithelial cell is influenced by the environmental pollutants, arsenite and cadmium. Acute and chronic exposure of MCF-10A cells to As+3 and Cd+2 sufficient to allow colony formation in soft agar, was used to determine if ENO2 expression was altered by these pollutants. Results It was shown that both As+3 and Cd+2 exposure caused significant increases in ENO2 expression under conditions of both acute and chronic exposure. In contrast, ENO1, the major glycolytic enolase in non-muscle and neuronal cells, was largely unaffected by exposure to either As+3 or Cd+2. Localization studies showed that ENO2 in the MCF-10A cells transformed by As+3 or Cd+2 had both a cytoplasmic and nuclear localization. In contrast, ENO1 was localized to the cytoplasm. ENO2 localized to the cytoplasm was found to co-localized with ENO1. Conclusion The results are the first to show that ENO2 expression in breast epithelial cells is induced by acute and chronic exposure to As+3 or Cd+2. The findings also suggest a possible link between As+3 and Cd+2 exposure and neuroendocrine differentiation in tumors. Overall, the results suggest that ENO2 might be developed as a biomarker indicating acute and/or chronic environmental exposure of the breast epithelial cell to As+3 and Cd+2.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference39 articles.

1. Ellis IO: Immunocytochemistry in diagnostic pathology. Theory and practice of histological techniques. Edited by: Bancroft JD, Stevens A. 1995, Edinburgh: Churchill Livingstone, 471-

2. Wold F: Enolase. The Enzymes. Edited by: Boyer PD. 1971, Academic Press: New York, 5: 499-538.

3. Schmechel D, Marangos P, Brightman M: Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978, 276: 834-836. 10.1038/276834a0.

4. Kato K, Ishiguro Y, Ariyoshi Y: Enolase isoenzymes as disease markers: distribution of three enolase subunits (α, β and γ) in various human tissues. Disease Markers. 1983, 1: 213-220.

5. Haimoto J, Takahashi Y, Koshikawa T, Nagura H, Kato K: Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest. 1985, 52: 257-263.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3