Author:
Jamal Mohd-Hafifi,Ch’ng Wei-Choong,Yusoff Khatijah,Shafee Norazizah
Abstract
Abstract
Background
Cisplatin resistance is a serious problem in cancer treatment. To overcome it, alternative approaches including virotherapy are being pursued. One of the candidates for anticancer virotherapy is the Newcastle disease virus (NDV). Even though NDV's oncolytic properties in various cancer cells have been widely reported, information regarding its effects on cisplatin resistant cancer cells is still limited. Therefore, we tested the oncolytic efficacy of a strain of NDV, designated as AF2240, in a cisplatin-resistant breast cancer cell line.
Methods
Cisplatin-resistant cell line (MCF7-CR) was developed from the MCF7 human breast adenocarcinoma cell line by performing a seven-cyclic exposure to cisplatin. Following NDV infection, fluorescence-activated cell sorting (FACS) analysis and immunoblotting were used to measure cell viability and viral protein expression, respectively. Production of virus progeny was then assessed by using the plaque assay technique.
Results
Infection of a mass population of the MCF7-CR with NDV resulted in 50% killing in the first 12 hours post-infection (hpi), comparable to the parental MCF7. From 12 hpi onwards, the remaining MCF7-CR became less susceptible to NDV killing. This reduced susceptibility led to increased viral protein synthesis and virus progeny production. The reduction was also associated with a prolonged cell survival via stabilization of the survivin protein.
Conclusions
Our findings showed for the first time, the involvement of survivin in the reduction of NDV-induced oncolysis in a subpopulation of cisplatin-resistant cells. This information will be important towards improving the efficacy of NDV as an anticancer agent in drug resistant cancers.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference35 articles.
1. Rosenberg B, VanCamp L, Trosko JE, Mansour VH: Platinum compounds: a new class of potent antitumour agents. Nature. 1969, 222: 385-386. 10.1038/222385a0.
2. Persons DL, Yazlovitskaya EM, Cui W, Pelling JC: Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res. 1999, 5: 1007-1014.
3. Ott I, Gust R: Preclinical and clinical studies on the use of platinum complexes for breast cancer treatment. Anticancer Agents Med Chem. 2007, 7: 95-110. 10.2174/187152007779314071.
4. Shamseddine AI, Farhat FS: Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy. 2011, 57: 468-487. 10.1159/000334093.
5. Fichtinger-Schepman AM, van der Veer JL, den Hartog JH, Lohman PH, Reedijk J: Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry. 1985, 24: 707-713. 10.1021/bi00324a025.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献