Abstract
Abstract
Background
The autonomic nervous system plays a vital role in regulating physiological functions. Transcutaneous auricular vagus nerve stimulation (taVNS) is a method that provides insights into autonomic nerve modulation. This paper presents a research protocol investigating proof of mechanism for the impact of taVNS on autonomic functions and aims to both deepen theoretical understanding and pave the way for clinically relevant applications.
Methods
This protocol employs a single-blind, randomized cross-over design involving 10 healthy male participants. Simultaneous assessment of both the afferent and efferent aspects of the vagus nerve will be performed by integrating physiological measures, magnetic resonance imaging, and a questionnaire survey. Electrocardiogram will be measured to assess changes in heart rate, as a primary outcome, and heart rate variability. Active taVNS and sham stimulation will be compared, which ensures precision and blinding. Electrical stimulation will be applied to the left concha cymba and the left lobule for the active and sham conditions, respectively. The specific parameters of taVNS involve a pulse width of 250 µs, a frequency of 25 Hz, and a current adjusted to the perception threshold (0.1 mA ≤ 5 mA), delivered in cycles of 32 s on and 28 s off.
Conclusions
This research investigates proof of mechanism for taVNS to elucidate its modulatory effects on the central and peripheral components of the autonomic nervous system. Beyond theoretical insights, the findings will provide a foundation for designing targeted neuromodulation strategies, potentially benefiting diverse patient populations experiencing autonomic dysregulation. By elucidating the neural mechanisms, this study contributes to the evolution of personalized and effective clinical interventions in the field of neuromodulation.
Trial Registration
JRCT, jRCTs032220332, Registered 13 September 2022; https://jrct.niph.go.jp/latest-detail/jRCTs032220332.
Funder
Japan Agency for Medical Research and Development
Japan Society for the Promotion of Science
National Center of Neurology and Psychiatry
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. 36, Neuroscience and Biobehavioral Reviews. 2012. p. 747–56.
2. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5.
3. Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11(3):492–500.
4. Porges SW. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev [Internet]. 1995;19(2):225–33. https://www.sciencedirect.com/science/article/pii/014976349400066A.
5. Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699–708.