Measurement precision and biological variation of cranial arteries using automated analysis of 3 T magnetic resonance angiography

Author:

Amin Faisal Mohammad,Lundholm Elisabet,Hougaard Anders,Arngrim Nanna,Wiinberg Linda,de Koning Patrick JH,Larsson Henrik BW,Ashina Messoud

Abstract

Abstract Background Non-invasive magnetic resonance angiography (MRA) has facilitated repeated measurements of human cranial arteries in several headache and migraine studies. To ensure comparability across studies the same automated analysis software has been used, but the intra- and interobserver, day-to-day and side-to-side variations have not yet been published. We hypothesised that the observer related, side-to-side, and day-to-day variations would be less than 10%. Methods Ten female participants were studied using high-resolution MRA on two study days separated by at least one week. Using the automated LKEB-MRA vessel wall analysis software arterial circumferences were measured by blinded observers. Each artery was analysed twice by each of the two different observers. The primary endpoints were to determine the intraclass correlation coefficient (ICC) and intra- an inter-observer, the day-to-day, and side-to-side variations of the circumference of the middle meningeal (MMA) and middle cerebral (MCA) arteries. Results We found an excellent intra- and interobserver agreement for the MMA (ICC: 0.909-0.987) and for the MCA (ICC: 0.876-0.949). The coefficient of variance within observers was ≤1.8% for MMA and ≤3.1% for MCA; between observers ≤3.4% (MMA) and ≤4.1% (MCA); between days ≤6.0% (MMA) and ≤8.0% (MCA); between sides ≤9.4% (MMA) and ≤6.5% (MCA). Conclusion The present study demonstrates a low (<5%) inter- and intraobserver variation using the automated LKEB-MRA vessel wall analysis software. Furthermore, the study also suggests that the day-to-day and side-to-side variations of the MMA and MCA circumferences are less than 10%.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3