Gumbel-softmax-based optimization: a simple general framework for optimization problems on graphs

Author:

Li Yaoxin,Liu Jing,Lin Guozheng,Hou Yueyuan,Mou Muyun,Zhang Jiang

Abstract

AbstractIn computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure, such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve, because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA), and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on four representative optimization problems on graph including modularity optimization from network science, Sherrington–Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph, and Influence Maximization problem from computational social science. High-quality solutions can be obtained with much less time-consuming compared to the traditional approaches.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Modelling and Simulation,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3