Transcriptome analysis of the response provided by Lasiopodomys mandarinus to severe hypoxia includes enhancing DNA repair and damage prevention

Author:

Dong Qianqian,Wang Zishi,Jiang Mengwan,Sun Hong,Wang Xuqin,Li Yangwei,Zhang Yifeng,Cheng Han,Chai Yurong,Shao Tian,Shi Luye,Wang Zhenlong

Abstract

Abstract Background Severe hypoxia induces a series of stress responses in mammals; however, subterranean rodents have evolved several adaptation mechanisms of energy metabolisms and O2 utilization for hypoxia. Mammalian brains show extreme aerobic metabolism. Following hypoxia exposure, mammals usually experience irreversible brain damage and can even develop serious diseases, such as hypoxic ischemic encephalopathy and brain edema. To investigate mechanisms underlying the responses of subterranean rodents to severe hypoxia, we performed a cross-species brain transcriptomic analysis using RNA sequencing and identified differentially expressed genes (DEGs) between the subterranean rodent Lasiopodomys mandarinus and its closely related aboveground species L. brandtii under severe hypoxia (5.0% O2, 6 h) and normoxia (20.9% O2, 6 h). Results We obtained 361 million clean reads, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. We identified 359 and 515 DEGs by comparing the hypoxic and normoxia groups of L. mandarinus and L. brandtii, respectively. Gene Ontology (GO) analysis showed that upregulated DEGs in both species displayed similar terms in response to severe hypoxia; the main difference is that GO terms of L. brandtii were enriched in the immune system. However, in the downregulated DEGs, GO terms of L. mandarinus were enriched in cell proliferation and protein transport and those of L. brandtii were enriched in nuclease and hydrolase activities, particularly in terms of developmental functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated DEGs in L. mandarinus were associated with DNA repair and damage prevention as well as angiogenesis and metastasis inhibition, whereas downregulated DEGs were associated with neuronal synaptic transmission and tumor-associated metabolic pathways. In L. brandtii, upregulated KEGG pathways were enriched in the immune, endocrine, and cardiovascular systems and particularly in cancer-related pathways, whereas downregulated DEGs were associated with environmental information processing and misregulation in cancers. Conclusions L. mandarinus has evolved hypoxia adaptation by enhancing DNA repair, damage prevention, and augmenting sensing, whereas L. brandtii showed a higher risk of tumorigenesis and promoted innate immunity toward severe hypoxia. These results reveal the hypoxic mechanisms of L. mandarinus to severe hypoxia, which may provide research clues for hypoxic diseases.

Funder

National Natural Science Foundation of China

Key scientific research projects of Henan Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3