Abstract
Abstract
Background
Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people.
Results
Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations.
Conclusion
This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.
Funder
National Research Foundation
Defense Threat Reduction Agency
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference89 articles.
1. Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O. Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci. 2008;105:19060–5.
2. Doherty TS, Fist CN, Driscoll DA. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc Ecol. 2019;34:603–14.
3. Hodgkison R, Balding ST, Zubaid A, Kunz TH. Temporal variation in the relative abundance of fruit bats (Megachiroptera: Pteropodidae) in relation to the availability of food in a lowland Malaysian rain forest. Biotropica. 2004;36:522–33.
4. Leblond M, Dussault C, Ouellet JP. What drives fine-scale movements of large herbivores? A case study using moose. Ecography. 2010;33:1102–12.
5. Simmons N, Cirranello A. Bat species of the world: a taxonomic and geographic database 2022. https://batnames.org/home.html.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献