Abstract
Abstract
Background
Sea turtle hatchlings must avoid numerous predators during dispersal from their nesting beaches to foraging grounds. Hatchlings minimise time spent in predator-dense neritic waters by swimming almost continuously for approximately the first 24 h post-emergence, termed the ‘frenzy’. Post-frenzy, hatchling activity gradually declines as they swim in less predator-dense pelagic waters. It is well documented that hatchlings exhibit elevated metabolic rates during the frenzy to power their almost continuous swimming, but studies on post-frenzy MRs are sparse.
Results
We measured the frenzy and post-frenzy oxygen consumption of hatchlings of five species of sea turtle at different activity levels and ages to compare the ontogeny of mass-specific hatchling metabolic rates. Maximal metabolic rates were always higher than resting metabolic rates, but metabolic rates during routine swimming resembled resting metabolic rates in leatherback turtle hatchlings during the frenzy and post-frenzy, and in loggerhead hatchlings during the post-frenzy. Crawling metabolic rates did not differ among species, but green turtles had the highest metabolic rates during frenzy and post-frenzy swimming.
Conclusions
Differences in metabolic rate reflect the varying dispersal stratagems of each species and have important implications for dispersal ability, yolk consumption and survival. Our results provide the foundations for links between the physiology and ecology of dispersal of sea turtles.
Funder
Great Barrier Reef Marine Park Authority
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference82 articles.
1. Somma LA. A categorization and bibliographic survey of parental behavior in lepidosaurian reptiles. Smithson Herpetol Info Serv. 1990;81:1–53.
2. Cavallo C, Dempster T, Kearney MR, Kelly E, Booth D, Hadden KM, et al. Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Funct Ecol. 2015;29(6):768–78.
3. Janzen F, Tucker J, Paukstis G. Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles. J Evol Biol. 2000;13(6):947–54.
4. Pilcher N, Enderby S, Stringell T, Bateman L. Nearshore turtle hatchling distribution and predation. In: Pilcher N, Ismai M, editors. Sea turtles of the Indo-Pacific: research, management and conservation. New York: Academic Press; 2000. p. 151–66.
5. Gyuris E. The rate of predation by fishes on hatchlings of the green turtle (Chelonia mydas). Coral Reefs. 1994;13(3):137–44.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献