Author:
Akcay Zeynep,Bose Amitabha,Nadim Farzan
Abstract
Abstract
We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincaré maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed.
Publisher
Springer Science and Business Media LLC
Subject
Neuroscience (miscellaneous)
Reference27 articles.
1. Wang S, Chandrasekaran L, Fernandez FR, White JA, Canavier CC: Short conduction delays cause inhibition rather than excitation to favor synchrony in hybrid neuronal networks of the entorhinal cortex. PLoS Comput Biol 2012.,8(1): Article ID e1002306 Article ID e1002306
2. Sieling FH, Archila S, Hooper R, Canavier CC, Prinz AA: Phase response theory extended to nonoscillatory network components. Phys Rev E, Stat Nonlinear Soft Matter Phys 2012.,85(5–2): Article ID 056208
3. Oprisan SA, Prinz AA, Canavier CC: Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J 2004, 87(4):2283–2298. 10.1529/biophysj.104.046193
4. Maran SK, Canavier CC:Using phase resetting to predict "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" and "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" locking in two neuron networks in which firing order is not always preserved. J Comput Neurosci 2008, 24(1):37–55. 10.1007/s10827-007-0040-z
5. Cui J, Canavier CC, Butera RJ: Functional phase response curves: a method for understanding synchronization of adapting neurons. J Neurophysiol 2009, 102(1):387–398. 10.1152/jn.00037.2009
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献