Abstract
AbstractBackgroundExtended-spectrum β-lactamase producingEnterobacterales(ESBL-E) are important causative agents for infections in humans and animals. At the Equine Veterinary Teaching Hospital of the University of Helsinki, the first infections caused by ESBL-E were observed at the end of 2011 leading to enhanced infection surveillance. Contact patients were screened for ESBL-E by culturing infection sites and rectal screening. This study was focused on describing the epidemiology and microbiological characteristics of ESBL-E from equine patients of the EVTH during 2011–2014, and analysing putative risk factors for being positive for ESBL-E during an outbreak ofKlebsiella pneumoniaeST307.ResultsThe number of ESBL-E isolations increased through 2012–2013 culminating in an outbreak of multi-drug resistantK. pneumoniaeST307:blaCTX-M-1:blaTEM:blaSHVduring 04–08/2013. During 10/2011–05/2014, altogether 139 ESBL-E isolates were found from 96 horses. Of these, 26 were from infection-site specimens and 113 from rectal-screening swabs. A total of 118 ESBL-E isolates from horses were available for further study, the most numerous beingK. pneumoniae(n = 44),Escherichia coli(n = 31) andEnterobacter cloacae(n = 31). Hospital environmental specimens (N = 47) yielded six isolates of ESBL-E. Two identicalE. cloacaeisolates originating from an operating theatre and a recovery room had identical or highly similar PFGE fingerprint profiles as five horse isolates. In the multivariable analysis, mare–foal pairs (OR 4.71, 95% CI 1.57–14.19, P = 0.006), length of hospitalisation (OR 1.62, 95% CI 1.28–2.06, P < 0.001) and passing of a nasogastric tube (OR 2.86, 95% CI 1.03–7.95, P = 0.044) were associated with being positive for ESBL-E during theK. pneumoniaeoutbreak.ConclusionsThe occurrence of an outbreak caused by a pathogenic ESBL-producingK. pneumoniaeST307 strain highlights the importance of epidemiological surveillance of ESBL-E in veterinary hospitals. Limiting the length of hospitalisation for equine patients may reduce the risk of spread of ESBL-E. It is also important to acknowledge the importance of nasogastric tubing as a potential source of acquiring ESBL-E. As ESBL-E were also found in stomach drench pumps used with nasogastric tubes, veterinary practices should pay close attention to appropriate equipment cleaning procedures and disinfection practices.
Funder
suomen eläinlääketieteen säätiö
eläinlääketieteen tutkimuksen tukisäätiö
suomen kulttuurirahasto
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference58 articles.
1. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed 9 Sep 2021.
2. Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017;72:957–68.
3. Apostolakos I, Franz E, van Hoek A, Florijn A, Veenman C, Sloet-van Oldruitenborgh-Oosterbaan MM, et al. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J Antimicrob Chemother. 2017;72:1915–21.
4. Sadikalay S, Reynaud Y, Guyomard-Rabenirina S, Falord M, Ducat C, Fabre L, et al. High genetic diversity of extended-spectrum β-lactamases producing Escherichia coli in feces of horses. Vet Microbiol. 2018;219:117–22.
5. Wolny-Koładka K, Lenart-Boroń A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environ Sci Pollut Res Int. 2018;25:21789–800.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献