Abstract
Abstract
Background
Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying the AMR in aquatic ecosystems.
Results
The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (> 95%) were detected for tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (< 10%). No AMR to cefquinome was found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed.
Conclusions
Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as potential source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference31 articles.
1. Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23:35–733.
2. Stratev D, Daskalov H, Vashin I. Characterisation and determination of antimicrobial resistance of β-haemolytic Aeromonas spp. isolated from common carp (Cyprinus carpio L.). Rev Méd Vét. 2015;2015(166):54–61.
3. Daskalov H. The importance of Aeromonas hydrophila in food safety. Food Control. 2006;17:474–83.
4. Lehane L, Rawlin GT. Topically acquired bacterial zoonoses from fish: a review. Med J Aust. 2000;173:256–9.
5. Patil HJ, Benet-Perelberg A, Naor A, Smirnov M, Ofek T, Nasser A, et al. Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics. Front Microbiol. 2016;7:1–12.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献