Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies

Author:

Yuen Ryan KC,Jiang Ruby,Peñaherrera Maria S,McFadden Deborah E,Robinson Wendy P

Abstract

Abstract Background Genomic imprinting is an important epigenetic process involved in regulating placental and foetal growth. Imprinted genes are typically associated with differentially methylated regions (DMRs) whereby one of the two alleles is DNA methylated depending on the parent of origin. Identifying imprinted DMRs in humans is complicated by species- and tissue-specific differences in imprinting status and the presence of multiple regulatory regions associated with a particular gene, only some of which may be imprinted. In this study, we have taken advantage of the unbalanced parental genomic constitutions in triploidies to further characterize human DMRs associated with known imprinted genes and identify novel imprinted DMRs. Results By comparing the promoter methylation status of over 14,000 genes in human placentas from ten diandries (extra paternal haploid set) and ten digynies (extra maternal haploid set) and using 6 complete hydatidiform moles (paternal origin) and ten chromosomally normal placentas for comparison, we identified 62 genes with apparently imprinted DMRs (false discovery rate <0.1%). Of these 62 genes, 11 have been reported previously as DMRs that act as imprinting control regions, and the observed parental methylation patterns were concordant with those previously reported. We demonstrated that novel imprinted genes, such as FAM50B, as well as novel imprinted DMRs associated with known imprinted genes (for example, CDKN1C and RASGRF1) can be identified by using this approach. Furthermore, we have demonstrated how comparison of DNA methylation for known imprinted genes (for example, GNAS and CDKN1C) between placentas of different gestations and other somatic tissues (brain, kidney, muscle and blood) provides a detailed analysis of specific CpG sites associated with tissue-specific imprinting and gestational age-specific methylation. Conclusions DNA methylation profiling of triploidies in different tissues and developmental ages can be a powerful and effective way to map and characterize imprinted regions in the genome.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3