Comparative transcriptome analysis and identification of candidate R2R3-MYB genes involved in anthraquinone biosynthesis in Rheum palmatum L.

Author:

Zhao Xia,Yan Feng,Li Yi-min,Tang Jing,Hu Xiao-chen,Feng Zhao,Gao Jing,Peng Liang,Zhang GangORCID

Abstract

Abstract Background Rheum palmatum L. has important medicinal value because it contains biologically active anthraquinones. However, the key genes and TFs involved in anthraquinone biosynthesis and regulation in R. palmatum remain unclear. Methods Based on full length transcriptome data, in this study, we screened the differentially expressed genes in the anthraquinone biosynthesis pathway. The R2R3-MYB family genes of R. palmatum were systematically identified based on full-length transcriptome sequencing followed by bioinformatics analyses. The correlation analysis was carried out by using co-expression analysis, protein interaction analysis, and real-time fluorescence quantitative analysis after MeJA treatment. The RpMYB81 and RpMYB98 genes were amplified by RT-PCR, and their subcellular localization and self-activation characteristics were analyzed. Results Comparative transcriptome analysis results revealed a total of 3525 upregulated and 6043 downregulated DEGs in the CK versus MeJA group; 28 DEGs were involved in the anthraquinone pathway. Eleven CHS genes that belonged to the PKS family were differentially expressed and involved in anthraquinone biosynthesis. Twelve differentially expressed MYBs genes were found to be co-expressed and interact with CHS genes. Furthermore, 52 MYB genes were identified as positive regulators of anthraquinone biosynthesis and were further characterized. Three MYB genes including RpMYB81, RpMYB98, and RpMYB100 responded to MeJA treatment in R. palmatum, and the levels of these genes were verified by qRT-PCR. RpMYB81 was related to anthraquinone biosynthesis. RpMYB98 had an interaction with genes in the anthraquinone biosynthesis pathway. RpMYB81 and RpMYB98 were mainly localized in the nucleus. RpMYB81 had self-activation activity, while RpMYB98 had no self-activation activity. Conclusion RpMYB81, RpMYB98, and RpMYB100 were significantly induced by MeJA treatment. RpMYB81 and RpMYB98 are located in the nucleus, and RpMYB81 has transcriptional activity, suggesting that it might be involved in the transcriptional regulation of anthraquinone biosynthesis in R. palmatum.

Funder

National Natural Science Foundation of China

Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space

Youth and Middle-aged Scientific and Technological Innovation Leading Talents Program of the Corps

Shaanxi University of Traditional Chinese Medicine Discipline Innovation Team Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3