Integration of transcriptomics and proteomics to elucidate inhibitory effect and mechanism of rosmarinic acid from Perilla frutescens (L.) Britt. in treating Trichophyton mentagrophytes

Author:

Xu Yang-ding,Guo Yu-jie,Mao He-rong,Xiong Zhi-xiang,Luo Meng-yu,Luo Rui-qi,Lu Shan,Huang Lu,Hong Yi

Abstract

Abstract Background Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chinese Medicine and modern pharmacological studies have shown that it has potential anti-fungi activity. This is the first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and proteomics. Methods Five most potential inhibitory compounds against fungi in P. frutescens was screened with network pharmacology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investigate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, the real-time polymerase chain reaction (PCR) was applied to verify the expression of genes. Results The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: progesterone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes by interfering with the expression of enolase in the glycolysis pathway. Comparison of real-time PCR and transcriptomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary explored by molecular docking analysis. Conclusion The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention and treatment of dermatophytes.

Funder

Science and Technology Project of Hubei Provincial Department of Education for Young and Middle-aged scientists

Hubei University of Chinese Medicine “Construction of graduate student innovation base (Graduate Workstation of Guangzhou Wellhealth Bio-Pharmaceutical Co.,Ltd.)”

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3