Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria

Author:

Wu Lan,Wu Mingli,Cui Ning,Xiang Li,Li Ying,Li Xiwen,Chen Shilin

Abstract

Abstract Background Although molecular analysis offers a wide range of options for species identification, a universal methodology for classifying and distinguishing closely related species remains elusive. This study validated the effectiveness of utilizing the entire chloroplast (cp) genome as a super-barcode to help identify and classify closely related species. Methods We here compared 26 complete cp genomes of ten Fritillaria species including 18 new sequences sequenced in this study. Each species had repeats and the cp genomes were used as a whole DNA barcode to test whether they can distinguish Fritillaria species. Results The cp genomes of Fritillaria medicinal plants were conserved in genome structure, gene type, and gene content. Comparison analysis of the Fritillaria cp genomes revealed that the intergenic spacer regions were highly divergent compared with other regions. By constructing the phylogenetic tree by the maximum likelihood and maximum parsimony methods, we found that the entire cp genome showed a high discrimination power for Fritillaria species with individuals of each species in a monophyletic clade. These results indicate that cp genome can be used to effectively differentiate medicinal plants from the genus Fritillaria at the species level. Conclusions This study implies that cp genome can provide distinguishing differences to help identify closely related Fritillaria species, and has the potential to be served as a universal super-barcode for plant identification.

Funder

National Natural Science Foundation of China

National key research and development plan

Key Research Project of China Academy of Chinese Medical Sciences of the 13th Five-Year Plan

Major Scientific and Technological Special Project for “Major New Drug Creation”

Fundamental Research Funds for the Central public welfare research institutes

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3