An intersectional analysis of LncRNAs and mRNAs reveals the potential therapeutic targets of Bi Zhong Xiao Decoction in collagen-induced arthritis rats

Author:

He Cailin,Wang Yang,Wen Yuqi,Li Teng,Hu En,Zeng Siqing,Yang Bo,Xiong Xingui

Abstract

AbstractBackgroundBi Zhong Xiao decoction (BZXD), a traditional Chinese herbal formula, has been used clinically for many years to treat rheumatoid arthritis (RA). Both clinical and experimental studies have revealed that BZXD is effective in treating RA, but the mechanism remains unclear. In this study, we aimed to explore the mechanism of efficacy of BZXD through transcriptomic analysis of lncRNA and mRNA.MethodsThe combination method of ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry was used to assess the quality of BZXD. The efficacy of BZXD in treating collagen-induced arthritis (CIA) was evaluated by clinical assessment, weight changes, hematoxylin–eosin and safranin o-fast green staining, and Micro-CT. Arraystar rat lncRNA-mRNA chip technology was used to determine the lncRNA and mRNA expression profiles of the Control, CIA and BZXD groups, and to screen gene expression profiles related to the curative effect of BZXD. A lncRNA-mRNA co-expression network was constructed for the therapeutic efficacy genes. Through GO function and KEGG pathway enrichment analysis, the biological functions and signaling pathways of therapeutic efficacy genes were determined. Based on fold change and functional annotation, key differentially expressed lncRNAs and mRNAs were selected for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. The functions of lncRNAs targeting mRNAs were verified in vitro.ResultsWe demonstrated that BZXD could effectively reverse bone erosion. After BZXD treatment, up to 33 lncRNAs and 107 mRNAs differentially expressed genes were reversely regulated by BZXD. These differentially expressed lncRNAs are mainly involved in the biological process of the immune response and are closely related to the ECM-receptor interaction, MAPK signaling pathway, Focal adhesion, Ras signaling pathway, Antigen processing and presentation, and Chemokine signaling pathway. We identified four lncRNAs (uc.361−, ENSRNOT00000092834, ENSRNOT00000089244, ENSRNOT00000084631) and three mRNAs (Acvr2a, Cbx2, Morc4) as potential therapeutic targets for BZXD and their microarray data consistent with the RT-qPCR. In vitro experiments confirmed that silencing the lncRNAs ENSRNOT00000092834 and ENSRNOT00000084631 reversed the expression of target mRNAs.ConclusionsThis study elucidates the possible mechanism of BZXD reversing bone erosion in CIA rats from the perspective of lncRNA and mRNA. To provide a basis and direction for further exploration of the mechanism of BZXD in treating RA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3