Therapeutic mechanisms of the medicine and food homology formula Xiao-Ke-Yin on glucolipid metabolic dysfunction revealed by transcriptomics, metabolomics and microbiomics in mice

Author:

Li Mei,Cheng Ding,Peng Chuan,Huang Yujiao,Geng Jie,Huang Guangrui,Wang Ting,Xu AnlongORCID

Abstract

Abstract Background In recent decades, the prevalence of metabolic diseases, particularly diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD), has increased dramatically, causing great public health and economic burdens worldwide. Traditional Chinese medicine (TCM) serves as an effective therapeutic choice. Xiao-Ke-Yin (XKY) is a medicine and food homology TCM formula consisting of nine “medicine and food homology” herbs and is used to ameliorate metabolic diseases, such as insulin resistance, diabetes, hyperlipidemia and NAFLD. However, despite its therapeutic potential in metabolic disorders, the underlying mechanisms of this TCM remain unclear. This study aimed to evaluate the therapeutic effectiveness of XKY on glucolipid metabolism dysfunction and explore the potential mechanisms in db/db mice. Methods To verify the effects of XKY, db/db mice were treated with different concentrations of XKY (5.2, 2.6 and 1.3 g/kg/d) and metformin (0.2 g/kg/d, a hypoglycemic positive control) for 6 weeks, respectively. During this study, we detected the body weight (BW) and fasting blood glucose (FBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), daily food intake and water intake. At the end of the animal experiment, blood samples, feces, liver and intestinal tissue of mice in all groups were collected. The potential mechanisms were investigated by using hepatic RNA sequencing, 16 S rRNA sequencing of the gut microbiota and metabolomics analysis. Results XKY efficiently mitigated hyperglycemia, IR, hyperlipidemia, inflammation and hepatic pathological injury in a dose dependent manner. Mechanistically, hepatic transcriptomic analysis showed that XKY treatment significantly reversed the upregulated cholesterol biosynthesis which was further confirmed by RT-qPCR. Additionally, XKY administration maintained intestinal epithelial homeostasis, modulated gut microbiota dysbiosis, and regulated its metabolites. In particular, XKY decreased secondary bile acid producing bacteria (Clostridia and Lachnospircaeae) and lowered fecal secondary bile acid (lithocholic acid (LCA) and deoxycholic acid (DCA)) levels to promote hepatic bile acid synthesis by inhibiting the LCA/DCA-FXR-FGF15 signalling pathway. Furthermore, XKY regulated amino acid metabolism including arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and tryptophan metabolism likely by increasing Bacilli, Lactobacillaceae and Lactobacillus, and decreasing Clostridia, Lachnospircaeae, Tannerellaceae and Parabacteroides abundances. Conclusion Taken together, our findings demonstrate that XKY is a promising “medicine food homology” formula for ameliorating glucolipid metabolism and reveal that the therapeutic effects of XKY may due to its downregulation of hepatic cholesterol biosynthesis and modulation of the dysbiosis of the gut microbiota and metabolites.

Funder

National major science and technology project

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3