Sanguinarine chloride induces ferroptosis by regulating ROS/BACH1/HMOX1 signaling pathway in prostate cancer

Author:

Liu ShanhuiORCID,Tao Yan,Wu Shan,Lin Jiawei,Fu Shengjun,Lu Jianzhong,Zhang Jing,Fu Beitang,Zhang Erdong,Xu Jing,Wang Jiaxuan,Li Lanlan,Zhang Lei,Wang Zhiping

Abstract

Abstract Background Sanguinarine chloride (S.C) is a benzophenanthrine alkaloid derived from the root of sanguinaria canadensis and other poppy-fumaria species. Studies have reported that S.C exhibits antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory effects, which contribute to its anti-cancer properties. Recent studies suggested that the antitumor effect of S.C through inducing ferroptosis in some cancers. Nevertheless, the precise mechanism underlying the regulation of ferroptosis by S.C remains poorly understood. Methods A small molecule library was constructed based on FDA and CFDA approved small molecular drugs. CCK-8 assay was applied to evaluate the effects of the small molecule compound on tumor cell viability. Prostate cancer cells were treated with S.C and then the cell viability and migration ability were assessed using CCK8, colony formation and wound healing assay. Reactive oxygen species (ROS) and iron accumulation were quantified through flow cytometry analysis. The levels of malondialdehyde (MDA) and total glutathione (GSH) were measured using commercially available kits. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) among the treatment groups. Western blotting and qPCR were utilized to investigate the expression of relevant proteins and genes. In vivo experiments employed a xenograft mice model to evaluate the anti-cancer efficacy of S.C. Results Our study demonstrated that S.C effectively inhibited the viability of various prostate cancer cells. Notably, S.C exhibited the ability to enhance the cytotoxicity of docetaxel in DU145 cells. We found that S.C-induced cell death partially relied on the induction of ferroptosis, which was mediated through up-regulation of HMOX1 protein. Additionally, our investigation revealed that S.C treatment decreased the stability of BACH1 protein, which contributed to HMOX1expression. We further identified that S.C-induced ROS caused BACH1 instability by suppressing USP47expression. Moreover, In DU145 xenograft model, we found S.C significantly inhibited prostate cancer growth, highlighting its potential as a therapeutic strategy. Collectively, these findings provide evidence that S.C could induce regulated cell death (RCD) in prostate cancer cells and effectively inhibit tumor growth via triggering ferroptosis. This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting ROS/USP47/BACH1/HMOX1 axis. Conclusion This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting the ROS/USP47/BACH1/HMOX1 axis. These findings offer novel insights into the underlying mechanism by which S.C inhibits the progression of prostate cancer. Furthermore, leveraging the potential of S.C in targeting ferroptosis may present a new therapeutic opportunity for prostate cancer. This study found that S.C induces ferroptosis by targeting the ROS/USP47/BACH1/HMOX1 axis in prostate cancer cells. Graphical Abstract

Funder

national natural fundation of china

natural science fundation project of gansu province

the cuiying scientific and technological innovation program of lanzhou university second hospital

Project of the Affiliated Hospital of Inner Mongolia Medical University-The Open Fund of Key Laboratory

traditional chinese medicine scientific research project of gansu province

cuiying scientific training program for undergraduates of lanzhou university second hospital

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3