The analgesic effects of Yu-Xue-Bi tablet (YXB) on mice with inflammatory pain by regulating LXA4-FPR2-TRPA1 pathway

Author:

Liu Ying,Zhang Guoxin,Zhu Chunyan,Yao Xuemin,Wang Wenli,Shen Li,Wang Haiping,Lin Na

Abstract

Abstract Background Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund’s Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation. Methods Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68+ and the proportion of F4/80+CD11b+ cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68+, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn. Results YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68+ and proportion of F4/80+CD11b+ within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects. Conclusions YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway is a key mechanism for the resolution of inflammation and analgesic effects.

Funder

Technology R&D Project of Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3