Research of insomnia on traditional Chinese medicine diagnosis and treatment based on machine learning

Author:

Tang Yuqi,Li Zechen,Yang Dongdong,Fang Yu,Gao Shanshan,Liang Shan,Liu Tao

Abstract

Abstract Background Insomnia as one of the dominant diseases of traditional Chinese medicine (TCM) has been extensively studied in recent years. To explore the novel approaches of research on TCM diagnosis and treatment, this paper presents a strategy for the research of insomnia based on machine learning. Methods First of all, 654 insomnia cases have been collected from an experienced doctor of TCM as sample data. Secondly, in the light of the characteristics of TCM diagnosis and treatment, the contents of research samples have been divided into four parts: the basic information, the four diagnostic methods, the treatment based on syndrome differentiation and the main prescription. And then, these four parts have been analyzed by three analysis methods, including frequency analysis, association rules and hierarchical cluster analysis. Finally, a comprehensive study of the whole four parts has been conducted by random forest. Results Researches of the above four parts revealed some essential connections. Simultaneously, based on the algorithm model established by the random forest, the accuracy of predicting the main prescription by the combinations of the four diagnostic methods and the treatment based on syndrome differentiation was 0.85. Furthermore, having been extracted features through applying the random forest, the syndrome differentiation of five zang-organs was proven to be the most significant parameter of the TCM diagnosis and treatment. Conclusions The results indicate that the machine learning methods are worthy of being adopted to study the dominant diseases of TCM for exploring the crucial rules of the diagnosis and treatment.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Reference38 articles.

1. Gao H, Wang Z, Li Y, Qian Z. Overview of the quality standard research of traditional Chinese medicine. Front Med. 2011;5(2):195–202.

2. Yan D, Liu J, Wang AT, Yang ZR, Yue SJ, Feng XZ. Exploring research ideas of mechanism of dominant diseases in traditional Chinese medicine based on evidence-based medicine. Zhongguo Zhong Yao Za Zhi. 2018;43(13):2633–8.

3. Chen YB, Tong XF, Ren J, Yu CQ, Cui YL. Current research trends in traditional Chinese medicine formula: a bibliometric review from 2000 to 2016. Evid Based Complement Alternat Med. 2019;2019:3961395.

4. Zhang H, Liu P, Wu X, Zhang Y, Cong D. Effectiveness of Chinese herbal medicine for patients with primary insomnia: A PRISMA-compliant meta-analysis. Medicine (Baltimore). 2019;98(24):e15967.

5. Singh A, Zhao K. Treatment of insomnia with traditional Chinese herbal medicine. Int Rev Neurobiol. 2017;135:97–115.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3