Author:
Hong Ge,Wu Hao,Ma Shi-Tang,Su Zhe
Abstract
Abstract
Background
It is showed that inflammation is causative factor for PCOS, leading to a decline in ovarian fertility. Previous studies have reported that tea consumption can reduce the incidence of ovarian cancer. We speculate that catechins from oolong tea (Camellia sinensis (L.) O. Kuntze) may have a potential therapeutic effect on PCOS. This study aims to investigate the effects of oolong tea catechins on the uterus of polycystic ovary syndrome (PCOS) mice induced by insulin combined with human chorionic gonadotropin (hCG).
Methods
Sixty female mice were divided into 6 groups (n = 10): model, model + Metformin 200 mg/kg, model + catechins 25 mg/kg, model + catechins 50 mg/kg, and model + catechins 100 mg/kg. Another forty female mice were divided into 4 groups (n = 10): control, control + catechins 100 mg/kg, model, and model + catechins 100 mg/kg. Ovarian and uterine weight coefficients, sex hormone levels, glucose metabolism and insulin resistance, and ovarian and uterine pathology were examined. Changes in NF-κB-mediated inflammation, MMP2 and MMP9 expressions, and STAT3 signaling were evaluated in the uterus of mice.
Results
Catechins could effectively reduce the ovarian and uterine organ coefficients, reduce the levels of E2, FSH and LH in the blood and the ratio of LH/FSH, and improve glucose metabolism and insulin resistance in PCOS mice induced by insulin combined with hCG. In addition, catechins could significantly down-regulated the expression of p-NF-κB p65 in the uterus and the protein expressions of the pro-inflammatory factors (IL-1β, IL-6, and TNF-α). The expressions of mmp2 and mmp9 associated with matrix degradation in uterine tissue were also significantly down-regulated by catechins. Further, catechins significantly reduced the expression of p-STAT3 and increased the expression of p-IRS1 and p-PI3K in the uterus of PCOS mice.
Conclusion
Catechins from oolong tea can alleviate ovarian dysfunction and insulin resistance in PCOS mice by inhibiting uterine inflammation and matrix degradation via inhibiting p-STAT3 signaling.
Funder
major natural science research projects in Anhui Universities
national major science and technology special project for “significant new drugs development”
the medical and health science and technology innovation project of Chinese Academy of Medical Science
National Research Center of Engineering and Technology of Tea Quality and Safety
top talents in disciplines (major) of universities
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,Pharmacology
Reference51 articles.
1. Alur-Gupta S, Chemerinski A, Liu C, Lipson J, Allison K, Sammel MD, et al. Body-image distress is increased in women with polycystic ovary syndrome and mediates depression and anxiety. Fertil Steril. 2019;112(930–8):e1.
2. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14:511.
3. Charifson MA, Trumble BC. Evolutionary origins of polycystic ovary syndrome: an environmental mismatch disorder. Evol Med Public Health. 2019;2019:50–63.
4. Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249–60.
5. Hager M, Horath S, Frigo P, Koch M, Marculescu R, Ott J. Changes in serum markers of patients with PCOS during consecutive clomiphene stimulation cycles: a retrospective study. J Ovarian Res. 2019;12:91.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献