Expanding potential targets of herbal chemicals by node2vec based on herb–drug interactions

Author:

Zhang Dai-yan,Cui Wen-qing,Hou Ling,Yang Jing,Lyu Li-yang,Wang Ze-yu,Linghu Ke-Gang,He Wen-bin,Yu Hua,Hu Yuan-jia

Abstract

AbstractBackgroundThe identification of chemical–target interaction is key to pharmaceutical research and development, but the unclear materials basis and complex mechanisms of traditional medicine (TM) make it difficult, especially for low-content chemicals which are hard to test in experiments. In this research, we aim to apply the node2vec algorithm in the context of drug-herb interactions for expanding potential targets and taking advantage of molecular docking and experiments for verification.MethodsRegarding the widely reported risks between cardiovascular drugs and herbs,Salvia miltiorrhiza(Danshen, DS) andLigusticum chuanxiong(Chuanxiong, CX), which are widely used in the treatment of cardiovascular disease (CVD), and approved drugs for CVD form the new dataset as an example. Three data groups DS-drug, CX-drug, and DS-CX-drug were applied to serve as the context of drug-herb interactions for link prediction. Three types of datasets were set under three groups, containing information from chemical-target connection (CTC), chemical-chemical connection (CCC) and protein–protein interaction (PPI) in increasing steps. Five algorithms, including node2vec, were applied as comparisons. Molecular docking and pharmacological experiments were used for verification.ResultsNode2vec represented the best performance with average AUROC and AP values of 0.91 on the datasets “CTC, CCC, PPI”. Targets of 32 herbal chemicals were identified within 43 predicted edges of herbal chemicals and drug targets. Among them, 11 potential chemical-drug target interactions showed better binding affinity by molecular docking. Further pharmacological experiments indicated caffeic acid increased the thermal stability of the protein GGT1 and ligustilide and low-content chemical neocryptotanshinone induced mRNA change of FGF2 and MTNR1A, respectively.ConclusionsThe analytical framework and methods established in the study provide an important reference for researchers in discovering herb–drug interactions, alerting clinical risks, and understanding complex mechanisms of TM.

Funder

Research Services and Knowledge Transfer Office, University of Macau

Science and Technology Bureau of Shanxi

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3