Total coumarins of Pileostegia tomentella induces cell death in SCLC by reprogramming metabolic patterns, possibly through attenuating β-catenin/AMPK/SIRT1

Author:

Liu Ying,Wu Kun,Li LiORCID,Zhu Fucui,Wang Li,Su Hua,Li Ying,Lu Lu,Lu Guoshou,Hu Xiaoxi

Abstract

Abstract Background Small-cell lung cancer (SCLC) is a high malignant and high energy-consuming type of lung cancer. Total coumarins of Pileostegia tomentella (TCPT) from a traditional folk medicine of Yao minority, is a potential anti-cancer mixture against SCLC, but the pharmacological and molecular mechanism of TCPT remains largely unknown. Methods Screening of viability inhibition of TCPT among 7 cell lines were conducted by using CCK-8 assays. Anti-proliferative activities of TCPT in SCLC were observed by using colony formation and flow cytometry assays. Morphological changes were observed by transmission electron microscope and Mito-Tracker staining. High Throughput RNA-seq analysis and bio-informatics analysis were applied to find potential targeted biological and signaling pathways affected by TCPT. The mRNA expression of DEGs and protein expression of signalling proteins and metabolic enzymes were verified by qPCR and Western blot assays. Activity of rate-limiting enzymes and metabolite level were detected by corresponding enzyme activity and metabolites kits. Xenograft nude mice model of SCLC was established to observe the in vivo inhibition, metabolism reprogramming and mechanism of TCPT. Results TCPT treatment shows the best inhibition in SCLC cell line H1688 rather than other 5 lung cancer cell lines. Ultrastructural investigation indicates TCPT induces mitochondria damage such as cytoplasm shrinkage, ridges concentration and early sight of autolysosome, as well as decrease of membrane potential. Results of RNA-seq combined bio-informatics analysis find out changes of metabolism progression affected the most by TCPT in SCLC cells, and these changes might be regulated by β-catenin/AMPK/SIRT1 axis. TCPT might mainly decline the activity and expression of rate-limiting enzymes, OGDH, PDHE1, and LDHA/B to reprogram aerobic oxidation pattern, resulting in reduction of ATP production in SCLC cells. Xenograft nude mice model demonstrates TCPT could induce cell death and inhibit growth in vivo. Assimilate to the results of in vitro model, TCPT reprograms metabolism by decreasing the activity and expression of rate-limiting enzymes (OGDH, PDHE1, and LDHA/B), and attenuates the expression of β-catenin, p-β-catenin, AMPK and SIRT1 accordance with in vitro data. Conclusion Our results demonstrated TCPT induces cell death of SCLC by reprograming metabolic patterns, possibly through attenuating master metabolic pathway axis β-catenin/AMPK/SIRT1.

Funder

Natural Science Foundation Program of Youth Project of Guangxi

Independent research project of Guangxi Institute of Chinese Medicine & Pharmaceutical Science

Research project of Guangxi Orthopaedics and Traumatology Hospital

Incubation Project of research teams of Minzu Hospital of Guangxi Zhuang Autonomous Region

Guangxi Traditional Chinese Medicine Key Discipline Construction Project

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic power matching for wheel loader based on power reflux hydrodynamic transmission system;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3