Transcriptome analysis reveals the molecular mechanism of Yiqi Rougan decoction in reducing CCl4-induced liver fibrosis in rats

Author:

Xiong Yu,Hu Jinyuan,Xuan Chen,Tian Jiayu,Tan Kaiyue,Chen Zhiwei,Luo Yan,Du Xuqin,Cheng Junxiong,Zhang Lanyue,Cao Wenfu

Abstract

Abstract Background Liver fibrosis develops from various chronic liver diseases, and there is currently a lack of specific treatment strategies. Yiqi Rougan decoction (YQRG) is a traditional Chinese medicine that has shown durative effects in the treatment of liver fibrosis; however, the mechanism associated with YQRG-related improvements in liver fibrosis remains to be experimentally determined. This study evaluated the therapeutic effect of YQRG on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and its molecular mechanism. Methods We used low-, medium-, and high-dose YQRG to treat CCl4-induced liver fibrosis in rats, followed by assessment of liver injury and fibrosis according to liver appearance, body weight, liver mass index, histopathologic examination, and serum testing. Additionally, we performed transcriptome analysis using RNA-sequencing (RNA-seq) technology, including cluster, Gene Ontology (GO), and pathway analyses, to identify differentially expressed genes (DEGs), and protein and gene expression were detected by immunofluorescence (IFC), western blot and real-time quantitative PCR. Results The results showed that YQRG effectively alleviated CCl4-induced liver injury and fibrosis in rats, including observations of improved liver function, decreased activity of hepatic stellate cells (HSCs), and decreased extracellular matrix (ECM) deposition. Moreover, we identified downregulated and upregulated DEGs in the model group relative to the control and YQRG-treated groups, with GO analysis revealing their enrichment in biological processes, such as endoplasmic reticulum stress (ERS), apoptosis, and autophagy. Furthermore, pathway analysis showed that YQRG treatment downregulated the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/AKT) signalling pathways and upregulated other signalling pathways, including those related to peroxisome proliferator-activated receptors(PPAR) and AMP-activated protein kinase(AMPK), with these findings subsequently verified experimentally. Conclusion These findings showed that YQRG improved CCl4-induced liver fibrosis through multiple mechanisms and pathways, offering critical insight into the YQRG-related therapeutic mechanism and promoting further research into its potential application.

Funder

National NaturalScience Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3