Saiga antelope horn suppresses febrile seizures in rats by regulating neurotransmitters and the arachidonic acid pathway

Author:

Wu Wenxing,Song Wencong,Zhao Jingjing,Guo Sheng,Hong Min,Zheng Jie,Hua Yongqing,Cao Peng,Liu Rui,Duan Jin-ao

Abstract

Abstract Background Saiga antelope horn (SAH) is a traditional Chinese medicine for treating febrile seizure (FS) with precise efficacy, but its mechanism of action and functional substances are still unclear. Given the need for further research on SAH, our group conducted studies to elucidate its mechanisms and active substances. Methods An FS rat pup model was constructed through intraperitoneal injection of LPS and hyperthermia induction. Behavioural indicators of seizures, hippocampal histopathological alterations, serum levels of inflammatory cytokines and hippocampal levels of neurotransmitters were observed and measured to investigate the effects of SAH on FS model rats. Hippocampal metabolomics and network pharmacology analyses were conducted to reveal the differential metabolites, key peptides and pathways involved in the suppression of FS by SAH. Results SAH suppressed FS, decreased the inflammatory response and regulated the Glu-GABA balance. Metabolomic analysis revealed 13 biomarkers of FS, of which SAH improved the levels of 8 differential metabolites. Combined with network pharmacology, a “biomarker-core target-key peptide” network was constructed. The peptides of SAH, such as YGQL and LTGGF, could exert therapeutic effects via the arachidonic acid pathway. Molecular docking and ELISA results indicated that functional peptides of SAH could bind to PTGS2 target, inhibiting the generation of AA and its metabolites in hippocampal samples. Conclusion In summary, the functional peptides contained in SAH are the main material basis for the treatment of FS, potentially acting through neurotransmitter regulation and the arachidonic acid pathway. Graphical abstract

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3